Electronic properties of vertically stacked MoS2/WS2 heterostructure
https://doi.org/10.31242/2618-9712-2022-27-3-459-465
Abstract
Monolayer transition metal dichalcogenides (TMD) as new two-dimensional semiconductor materials open new possibilities for optoelectronics due to their excellent light capture and photodetection capabilities. TDM-based photodetectors have become important components of sensing, visualization and communication systems, capable of receiving and converting optical signals into electrical ones. An urgent and unsolved task is the development of high-quality single-layer and heterolayer electronic devices based on transition metal dichalcogenides with a long service life, such as optoelectronic devices and field-effect transistors. The control of the band gap in heterostructures is one of the necessary steps in this development. We studied the band gap in the MoS2/WS2 heterostructure depending on the distance between the MoS2 and WS2 layers. Ab initio calculations showed that, in contrast to homogeneous bilayers, the MoS2/ WS2 heterojunction has an optically active band gap smaller than that of single-layer MoS2 and WS2. With an increase in the interlayer distance in the MoS2/WS2 heterostructures, the interaction between the layers weakens. Thus, it results in a shift of the Fermi level to a state of higher energy.
About the Authors
Yu. M. Grigor’evRussian Federation
GRIGOR’EV, Yuri Mikhailovich, Dr. Sci. (Physics and Mathematics), Deputy Rector, Head of the Theoretical Physics Department, Leading Researcher, Author ID: 14623701400, Researcher ID: K-8270-2016
58 Belinskogo st., Yakutsk 677891;
41 Lenina pr., Yakutsk 677007
E. P. Sharin
Russian Federation
SHARIN, Egor Petrovich, Cand. Sci. (Physics and Mathematics), Associate Professor, Author ID: 56291744200, Researcher ID: H-1093-2013
58 Belinskogo st., Yakutsk 677891
N. Ya. Muksunov
Russian Federation
MUKSUNOV, Nikita Yanovich, student, Institute of Physics and Technology
58 Belinskogo st., Yakutsk 677891
References
1. Sundaram R. S., Engel M., Lombardo A., Krupke R., Ferrari A. C., Avouris P., Steiner M. Electroluminescence in single layer MoS2. Nano letters. 2013; 13(4):1416–1421. DOI: 10.1021/nl400516a.
2. Radisavljevic B., Kis A. Reply to ‘Measurement of mobility in dual-gated MoS2 transistors’. Nature nanotechnology. 2013;8(3):147–148. DOI:10.1038/nnano.2013.30.
3. Perkins F.K., Friedman A.L., Cobas E., Campbell P.M., Jernigan G.G., Jonker B.T. Chemical vapor sensing with monolayer MoS2. Nano letters. 2013;13(2): 668–673. https://doi.org/10.1021/nl3043079.
4. Yin Z. Y., Li H., Jiang L., Shi Y. M., Sun Y. H., Lu G., Zhang Q., Chen X. D., Zhang H. Single-Layer MoS2 Phototransistors. ACS nano. 2012;6(1):74–80. https://doi.org/10.1021/nn2024557.
5. Chhowalla M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry. 2013;5(4):263–275. DOI: 10.1038/nchem.1589.
6. Li H., Wu J., Yin Z., Zhang H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. Accounts of chemical research. 2014;47(4):1067–1075. DOI: 10.1021/ja4019572
7. Huang X., Tan C., Yin Z., Zhang Z. Anniversary article: hybrid nanostructures based on two‐dimensional nanomaterials. Advanced Materials. 2014; 26(14):2185–2204. DOI: 10.1002/smll.201002009.
8. Jariwala D. et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano. 2014;8(2):1102–1120. DOI: 10.1021/nn500064s.
9. Britnell L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science. 2013; 340(6138):1311–1314. DOI:10.1126/science.1235547.
10. Yu W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature nanotechnology. 2013;8(12):952–958. DOI: 10.1038/nnano.2013.219
11. Lopez-Sanchez O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature nanotechnology. 2013;8(7):497–501. DOI:10.1038/nnano.2013.100.
12. Splendiani A. et al. Emerging photoluminescence in monolayer MoS2. Nano letters. 2010;10(4):1271–1275. DOI:10.1021/nl903868w.
13. Mak K. F. et al. Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters. 2010; 105(13):136805. DOI:10.1103/PhysRevLett.105.136805.
14. Xiao D. et al. Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Physical review letters. 2012;108(19):196802. DOI: 10.1103/PhysRevLett.108.196802.
15. Gutierrez H. et al. Extraordinary room-temperature photoluminescence in WS2 monolayers. arXiv.org. 2012: 1208.1325. https://doi.org/10.48550/arXiv.1208.1325
16. Shih C.-K. Coherently strained in-plane atomic layer heterojunctions. NPG Asia Materials. 2015; 7 (12): e231. DOI:10.1038/am.2015.127.
17. Huang C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature materials. 2014; 13(12):1096–1101. DOI:10.1038/nmat4064.
18. Novoselov K. S. et al. 2D materials and van der Waals heterostructures. Science. 2016;353(6298):aac9439. DOI: 10.1126/science.aac9439.
19. Loginov A.B. et al. Formation of Nanostructured Films Based on Mos2, Ws2, Moo2 and their heterostructures. Journal of Applied Physics. 2021;91(10):1509. (In Rus.)] DOI: https://doi.org/10.21883/JTF.2021.10.51364.102-21.
20. Xie S. et al. Coherent, atomically thin transitionmetal dichalcogenide superlattices with engineered strain. Science. 2018;359(6380):1131–1136. DOI: 10.1126/science.aac9439.
21. Li D. et al. Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano. 2016;10:3766–3775. DOI:10.1021/acsnano.6b00371.
22. Huo N. et al. Novel optical and electrical transport properties in atomically tin Wse2/MoS2 p-n heterostructures. Adv. Electron. Mater. 2015;1(5):1400066. DOI: 10.1002/aelm.201400066.
23. Hong T. et al. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale. 2015;7(44):18537–18541. DOI: http://doi.org/10.1039/C5NR03400K.
24. Kosmider K., Fernández-Rossier J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. 2013;B 87:075451. DOI:10.1103/PhysRevB.87.075451.
25. Rivera P. et al. Observation of Long-Lived Interlayer Excitons in Monolayer MoSe2-WSe2 Heterostructures. Nat. Commun. 2015; 6:6242. DOI:10.1038/ncomms7242.
26. Tongay S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014;14:3185–3190. DOI: 10.1021/nl500515q.
27. Jiang H. Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach. The Journal of Physical Chemistry C. 2012; 116(14):7664–7671. DOI: https://doi.org/10.1021/jp300079d.
28. Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B. 2012;86(11):115409. DOI: https://doi.org/10.1103/PhysRevB.86.115409.
29. Wang F. et al. Tuning coupling behavior of stacked heterostructures based on MoS2, WS2, and WSe2. Scientific reports. 2017; 7(1):1–10. DOI: 10.1038/srep44712.
Review
For citations:
Grigor’ev Yu.M., Sharin E.P., Muksunov N.Ya. Electronic properties of vertically stacked MoS2/WS2 heterostructure. Arctic and Subarctic Natural Resources. 2022;27(3):459-465. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-3-459-465