Ontogenetic reactions of the mesostructure of leaves of Betula nana L. on the technogenic stress in the Arctic
https://doi.org/10.31242/2618-9712-2022-27-3-423-433
Abstract
The article presents the results of studies of indicators of mesostructure in the ontogeny of leaves of dwarf birch (Betula nana L.), which grows under the influence of emissions of industrial enterprises of the city of Murmansk. Signs of xeromorphism of B. nana leaves were revealed: thickening of the upper and lower epidermis, leaf blade, spongy parenchyma. In the leaf ontogenesis, the thickness of the palisade mesophyll and the palisade index decreases. As a result of data processing by analysis of variance, it was found that technogenic pollution effects on the length of palisade cells of the leaves of B. nana in June and July (p ≤ 0.0005) and does not affect in August (p ≤ 0.1).There were no significant differences in the sizes of cells of the spongy mesophyll in the samples, which indicates an increase of the thickness of the spongy layer and leaf blade due to the number of periclinal cell divisions and increase of the volume of intercellular spaces. The obtained data confirm the nonspecific reaction of the assimilation apparatus of birch trees on the influence of stress environmental factors. The ontogenetic reactions of indicators of the mesostructure of B. nana are considered as adaptive responses to technogenic stress, providing the decrease in transpiration and optimal photosynthesis under conditions of environmental pollution of the Arctic city. Dwarf birch can be used as an object for biomonitoring of environmental quality in the industrial areas of the Arctic and Subarctic.
About the Authors
N. V. VasilevskayaRussian Federation
VASILEVSKAYA Natalia Vladimirovna, Dr. Sci. (Biology), Professor
15 Kapitana Egorova Str., Murmansk 183038
V. V. Struzhko
Russian Federation
STRUZHKO Valeria Viktorovna, Master of Biology
15 Kapitana Egorova Str., Murmansk 183038
References
1. Abakumov E., Shamilishviliy G., Yurtaev A. Soil polychemical contamination on Beliy island as key background and reference plot for Yamal region. Polish Polar Research Journal. 2017:30:313–332. DOI: 10.1515/popore-2017-0020
2. Miroslavov E. A., Voznesenskaya E. V., Koteeva N. K. Comparative characteristics of the leaf anatomy of plants of the arctic and boreal zones. Botanicheskii Zhurnal. 1998;83(3):21–27. (In Russ.)
3. Kudo G., Suzuki S. Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan. Oecologia. 2003; 135:280–287. DOI:10.1007/s00442-003-1179-6
4. Thorsson Æ.Th., Palsson S., Sigurgeirsson A., Anamthawat-Jonsson K. Morphological variation among B. nana (diploid), Betula pubescens (tetraploid) and their triploid hybrids in Iceland. Annals of Botany. 2007;99: 1183–1193. DOI:10.1093/aob/mcm060
5. Vasilevskaya N. V. Plant Ecology of the Arctic. Murmansk: MGPU;2014. 184 p. (In Russ.)
6. Schollert M. Arctic vegetation under climate change – biogenic volatile organic compound emission and leaf anatomy. PHD Thesis. Copenhagen; 2015. 213 p.
7. Schollert M., Kivimäenpää M., Valolahti H. M., Rinnan R. Climate change alters leaf anatomy but has no effects on volatile emissions from arctic plants. Plant, Cell and Environment. 2015;38:2048–2060. DOI: 10.1111/pce.12530
8. Kravkina I.M., Miroslavov E.A. Effect of atmospheric pollutants on the dynamics of mitochondria and chloroplast in the chlorenchyma cells of Scots pine needles. Aerial pollution in Kola Peninsula. Apatity; 1993:233–235.
9. Lamppu J., Roito M., Tikkanen S. Indication of pollution-induced stress on forest trees and lichens in Lapland. Aerial pollution in Kola Penninsula. Apatity; 1993:266–267.
10. Lukina Yu.M., Vasilevskaya N.V. Impact of industrial pollution on the leaf structure of Betula czerepanovii (Betulaceae). Rastitelnye Resursy. 2012;48:51–58. (In Russ.)
11. Urazgildin R.V., Kulagin A.Yu. Technogenesis and structure-functional reactions of tree species: damage, adaptations, strategies. Part 1. Influence on the macro- and micromorphology of the assimilation apparatus. Biosfera. 2021;13(3):86–100. DOI: 10.24855/biosfera.v13i3.578 (In Russ.)
12. Yakovlev A.P. Monitoring of the growth and development of Vaccinium myrtillus L. in the vicinity of the plant for the thermal treatment of municipal solid waste in the city of Murmansk. Natural Science Problems of the Arctic Region. Murmansk; 2007:87–88. (In Russ.)
13. Plyusnina S.N., Zagirova S.V. Structure of the photosynthetic apparatus of Betula nana (Betulaceae) in the Northern and Subpolar Urals. Botanicheskii Zhurnal. 2016;3:261–274. (In Russ.)
14. Plyusnina S.N., Panyukov A.N. Variability of structural parameters of the leaves of Betula nana L. in shrub communities of the northern hypoarctic tundras. Systematic and Floristic Studies of the Northern Eurasia. Moscow: MGPU; 2018:181–184. (In Russ.)
15. Flora of the Murmansk Region. Moscow; Leningrad; 1956. Iss. 3. 449 p. (In Russ.)
16. Jadwiszczak K.A., Kłosowski S., Zalewska I., Banaszek A., Chrzanowska A. Genetic diversity and sexual reproduction in relict populations of Betula nana. Silva Fennica. 2017;51:18 p. DOI:10.14214/sf.5643
17. Borrell J.S., Zohren J., Nichols R.A., Buggs R.J.A. Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evolutionary Applications. 2020;13:161–175. DOI:10.1111/eva.12883
18. Arctic Flora of the USSR. Moskva;Leningrad: Nauka, 1966;5. Salicaceae – Portulacaceae. 206 p. (In Russ.)
19. Provan J., Bennett K.D. Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution. 2008;23:564–571. DOI: 10.1016/j.tree.2008.06.010
20. Eidesen P.B, Alsos I.G, Brochmann C. Comparative analyses of plastid and AFLP data suggest different colonization history and asymmetric hybridization between Betula pubescens and B. nana. Molecular Ecology. 2015;24:3993–4009. DOI: 10.1111/mec.13289
21. Heikkilä M., Fontana S.L., Seppä H. Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. Journal of Quaternary Science. 2009;24:802–815. DOI: 10.1002/jqs.1254
22. Palme A.E., Su Q., Palsson S., Lascoux M. Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, Betula pubescens and B. nana. Molecular Ecology. 2004; 13:167–178. DOI: 10.1046/j.1365-294x.2003.02034.x
23. Eriksson G., Jonsson A. A review of the genetics of Betula. Scandinavian Journal of Forest Research. 1986;1:421–434. DOI:10.1080/02827588609382434
24. Koropachinskiy Yu.I. Natural hybridization and taxonomy of birches in North Asia. Contemporary problems of Ecology. 2013;6:350–369.
25. Jarvinen P., Palme A., Morales L.O., Lannenpa M., Keinanen M., Sopanen T., Lascoux M. Phylogenetic relationships of Betula species (Betulaceae) based on nuclear ADH and chloroplast mat K sequences. American Journal of Botany. 2004;91:1834–1845. DOI:10.3732/ajb.91.11.1834
26. Thorsson Æ.Th., Palsson S., Lascoux M., Anamthawat-Jonsson K. Introgression and phylogeography of Betula nana (diploid), B. pubescens (tetraploid) and their triploid hybrids in Iceland inferred from cp DNA haplotype variation. Journal of Biogeography. 2010;37:2098–2110. DOI:10.1111/j.1365-2699.2010.02353.x
27. Demin V.A. Main climatic trends on the Kola Peninsula during the period of instrumental meteorological measurements. Trudy Kolskogo Nauchnogo Tsentra RAN. 2012;1:99–110. (In Russ.)
28. Guzeva A.V., Slukovskii Z.I., Myazin V.A. Geochemical features of lakes located in an urbanised area of the Russian Arctic (Murmansk region). Limnology and Freshwater Biology. 2020;4:511–512. DOI: 10.31951/2658-3518-2020-A-4-511
29. Dineva S.B. Development of the leaf blades of Acer platanoides in industrially contaminated environment. Dendrobiology. 2006;55:25–32.
30. Scorbach V.V., Zhilyakova M.N. Environmental contamination influence on main epidermal cells of the smallleaved lime (Tilia cordata Mill) on the example of Belgorod. Nauchnye Vedomosti. 2009;11(66):40–44. (In Russ.)
31. Larcher W. Physiological Plant Ecology. Ecophysiology and Stress Physiology of Fuctional Groups. New York: Springer. 513 p.
32. Hovenden M.I., Vander Schoor J.K. Nature vs nurture in the leaf morphology of Southern Beech, Nothofagus cuminglamii (Notofagaceae). New Phytologist. 2003;161: 521–590. DOI: 10.1046/j.1469-8137.2003.00931.x
33. Pyankov V.I., Ivanova L.A., Lambers H. Quantitative anatomy of photosynthetic tissues of plant species of different functional types of boreal vegetation. Inherent Variations in Plant Growth: Physiological Mechanisms and Ecological Consequences. Leiden: Backhuys Publishers; 1998:71–87.
34. Ivanova L.A., Pyankov V.I. Influence of environmental factors on the structural parameters of the leaf mesophyll. Botanicheskii Zhurnal. 2002;87:17–28. (In Russ.)
35. Ivanova L.A., Ivanov L.A., Ronzhina D.A., Pyankov V.I. Structural parameters of leaf mesophyll during shading of plants of various functional types. Plant Physiology. 2008;55:230–239. (In Russ.)
36. Egorova N.N., Kulagin A.A. Anatomical and morphological features of the assimilation apparatus and conductive tissues of woody plants in extreme forest conditions. Izvestia Samarskogo Nauchnogo Tsentra RAN. 2008;10:310–324. (In Russ.)
37. Egorova N.N., Nafikova A.T. Variability of traits of the anatomical structure of the assimilating organs of Betula pendula Roth. and Populus balzamifera L. in extreme forest vegetation conditions. Izvestia Samarskogo Nauchnogo Tsentra RAN. 2011;13:165–168. (In Russ.)
38. Chukina N.V., Filimonova E.I., Fayruzova A.I., Borisova G.G. Morphological and physiological features of Betula pendula Roth growing on the ash dumps of the Middle Urals. Proceedings of Petrozavodsk State University. 2016;6:68–75 (In Russ.)
39. Mokronosov A.T. Ontogenetic Aspect of Photosynthesis. Mosсow: Kolos; 1981. 196 p. (In Russ.)
40. Gamaley Yu.V. Transport System of Vascular Plants. Saint Petersburg: SPB GU; 2004. 424 p. (In Russ.)
Review
For citations:
Vasilevskaya N.V., Struzhko V.V. Ontogenetic reactions of the mesostructure of leaves of Betula nana L. on the technogenic stress in the Arctic. Arctic and Subarctic Natural Resources. 2022;27(3):423-433. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-3-423-433