Numerical simulation of stress-strain state of pipeline under heaving of ground
https://doi.org/10.31242/2618-9712-2018-25-3-114-120
Abstract
The main pipelines in permafrost areas are exposed to various exogenous processes, for example, frost heaving. In the work, values of frost heaving of various types are shown by mathematical modeling. Numerical realization of the problem of heat and moisture transfer process is carried out by a scheme with directed differences considering the sign of the speed of groundwater infiltration. For the computational experiment, initial parameters for heat and moisture transfer at a base of the pipeline are defined in relation to natural and climatic conditions of Central Yakutia. In the presence of groundwater, the heaving of an injection type is formed. Over time, frost injection of the injection type increases, which leads to a change in the value of the coefficient of unevenness. It is shown that the stress state of the pipeline as a result of frost heaving gradually transforms into plastic deformation. With the help of the pipeline fold equation, the stress-deformed state of the pipeline is estimated from the amount of migration heaving. The heaves are associated with a multi-year «seasonal loosening», which can lead to low-cycle fatigue failures.
About the Authors
Mikhail Petrovich LebedevRussian Federation
LEBEDEV Mikhail Petrovich, Corresponding Member of the RAS, Doctor of Technical Sciences, Chief Researcher, V.P. Larionov Institute of Physical-Technical Problems of the North SB RAS, 1 Oktyabrskaya St., Yakutsk, 677980, Russia, http://orcid.org/0000-0003-0086-9921, m.p.lebedev@prez.ysn.ru
Petr Petrovich Permyakov
Russian Federation
PERMYAKOV Petr Petrovich, Doctor of Physical and Mathematical Sciences, Associate Professor, Leading Researcher, V.P. Larionov Institute of Physical-Technical Problems of the North SB RAS, 1 Oktyabrskaya St., Yakutsk, 677980, Russia, http://orcid.org/0000-0002-6123-9985, permyakov2005@mail.ru
Dzhulustan Semenovich Ivanov
Russian Federation
IVANOV Dzhulustan Semenovich, Leading Electronics Engineer, V.P. Larionov Institute of Physical-Technical Problems of the North SB RAS, 1 Oktyabrskaya St., Yakutsk, 677980, Russia, http://orcid.org/0000-0003-0635-1891, ivanovds@gmail.com
Yuri Arkadyevich Yakovlev
Russian Federation
YAKOVLEV Yuri Arkadyevich, Leading Electronics, V.P. Larionov Institute of Physical-Technical Problems of the North SB RAS, 1 Oktyabrskaya St., Yakutsk, 677980, Russia, http://orcid.org/0000-0003-1111-2748, Djukka@mail.ru.
References
1. Sokolov S.M., Limar' O.V. Opredelenie napryazhenno-deformatsionnogo sostoyaniya truboprovoda na perekhode cherez granitsu mezhdu razlichnymi gruntami // Neftyanoe khozyajstvo. 2006,
2. № 5. S. 127–129.
3. Akagawa S., Huang S., Ono T., Tanaka T., Oba A., O'hashi K., Fukuda M. Sudden up-lift of buried child gas pipeline monitored at the boundary of permafrost and non-permafrost. Permafrost engineering. Fifth international symposium. Proceeding. Yakutsk, 2002. V. 1. P. 125–129.
4. Amanuma C., Kanauchi T., Akagawa S., Kanie S. // Procedia Engineering, Evaluation of Frost Heave Pressure Characteristics in Transverse Direction to Heat Flow. 2017. 171, 12. P. 461–468. DOI: 10.1016/j.proeng.2017.01.357.
5. Permyakov P.P., Popov G.G., Matveeva M.V. Prognoz dinamiki «sezonnogo rasshatyvaniya» gazoprovoda // Gazovaya promyshlennost'. 2011. № 4. S. 17–19.
6. Permyakov P.P., Ammosov A.P. Matematicheskoe modelirovanie tekhnogennogo zagryazneniya v kriolitozone. Novosibirsk: Nauka, 2003. 224 s.
7. Ikrin V.A. Soprotivlenie materialov s elementami teorii uprugosti i plastichnosti. M.: Izd. ASV, 2004. 170 s.
8. Kuz'bozhev A.S., Birillo I.N., Shishkov I.V. Deformatsiya gazoprovoda ot moroznogo pucheniya grunta // Neft' i gaz. 2014. № 2. S. 56–59.
9. Toronov S.Yu., Redutinskij M.V., Dorofeev
10. S.M. Opredelenie tekhnologicheskikh parametrov montazha truboprovoda po otkloneniyam ot proekta // Neft' i gaz. 2012. № 3. S. 72–76.
Review
For citations:
Lebedev M.P., Permyakov P.P., Ivanov D.S., Yakovlev Yu.A. Numerical simulation of stress-strain state of pipeline under heaving of ground. Arctic and Subarctic Natural Resources. 2018;23(3):116-123. (In Russ.) https://doi.org/10.31242/2618-9712-2018-25-3-114-120