Transversally isotropic elastic material applicable for permafrost rocks: а case study
https://doi.org/10.31242/2618-9712-2023-28-2-337-345
Abstract
In this paper we present the principles for a new method of quaternion factorization of the equilibrium equations for the transversally isotropic elasticity. Natural and artificial materials have anisotropy of physical properties. Many of them have transversal isotropy of elastic properties. Transversally isotropic materials are used in many technologies and industries, for example, in rock mechanics under permafrost conditions. Mathematical description of such materials involves the model of a transversally-isotropic material with 5 independent elastic constants. The equations of this model are more complicated than those for isotropic elasticity, and their analysis causes much more difficulties. One of the methods for analyzing such equations is factorization, i.e. reduction to the solution of simpler first-order equations.
About the Authors
Yu. M. GRIGOR’EVRussian Federation
GRIGOR’EV, Yuri Mikhailovich, Dr. Sci (Phys. and Math.), Associate Professor, Deputy rector for international scientific and technical activities, Head of the Theoretical Physics Department; Leading Researcher
AuthorID: 14623701400, ReseacherID: K-8270-2016
Yakutsk
A. M. YAKOVLEV
Russian Federation
YAKOVLEV, Andrey Mikhailovich, Machine Learning Specialist
Yakutsk
References
1. Lekhnitsky S.G. Theory of elasticity of an anisotropic body. Ed. 2nd. Moscow: Nauka; 1977. 416 p. (In Russ.)
2. Ding H., Chen W., Zhang L. Elasticity of Transversely Isotropic Materials. Springer; 2006.
3. Klimov D.M., Karev V.I., Kovalenko Y.F. et al. Mechanical--mathematical and experimental modeling of well stability in anisotropic media. Mech. Solids. 2013; (4):4–12. (In Russ.)
4. Zhuravlev A.B., Ustinov K.B. On values characterizing the degree of elastic anisotropy of transversely isotropic rocks; role of shear modulus. Mech. Solid. 2019; (4):129–140. https://doi.org/10.1134/S0572329919040123. (In Russ.)
5. Liu Q., Wang Z., Li Z. et al. Transversely isotropic frost heave modeling with heat–moisture–deformation coupling. Acta Geotech. 2020;15:1273–1287. https://doi.org/10.1007/s11440-019-00774-1
6. Xia Caichu, Lv Zhitao, Li Qiang, Huang Jihui, Bai Xueying. Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels. Cold Regions Science and Technology. 2018;152:48–58. https://doi.org/10.1016/j.coldregions.2018.04.011.
7. Lyu Zhitao, Xia Caichu, Liu Weiping. Analytical solution of frost heaving force and stress distribution in cold region tunnels under non-axisymmetric stress and transversely isotropic frost heave of surrounding rock. Cold Regions Science and Technology. 2020;178:103117. https://doi.org/10.1016/j.coldregions.2020.103117
8. Hashin Z. Analysis of composite materials – a survey. Applied Mechanics. 1983;50(3):481–505. https:// doi.org/10.1115/1.3167081
9. Cheng Ming, Chen Weinong, Tusit Weerasooriya. Mechanical properties of kevlar \textcircled{R}KM2 single fiber. Engineering Materials and Technologytransactions of The Asme. 2005;127(2):197–203. https:// doi.org/10.1115/1.1857937
10. Bodunov N.M., Druzhinin G.V. On one solution of an axisymmetric problem of the theory of elasticity for a transversally isotropic material. Applied Mechanics And Technical Physics. 2009;50(6): 81–89. (In Russ.)
11. Zou R., Xia Y., Liu S., Hu P., Hou W., Hu Q., Shan C. Isotropic and anisotropic elasticity and yielding of 3D printed material. Composites Part B: Engineering. 2016;99:506–513. https://doi.org/10.1016/j.compositesb.2016.06.009.
12. Bauer S.M., Zamuraev L.A., Kotlyar K.E. Model of a transversally isotropic spherical layer for calculating changes in intraocular pressure during intrascleral injections. Russian Journal of Biomechanics. 2006;10(2):43– (In Russ.)
13. Gurlebeck K., Habetha K., Sprossig W. Holomorphic Functions In The Plane And N-Dimensional Space. Basel: Birkhauser; 2008.
14. Grigor’ev Yu.M. Solution of a problem for an elastic sphere in a closed form. Dynamika Spl. Sredy. 1985; 71:50–54. (In Russ.)
15. Bock S., Gurlebeck K. On a spatial generalization of the Kolosov-Muskhelishvili formulae. Mathematical Methods in the Applied Sciences. 2009;32(2):223–240. https://doi.org/10.1002/mma.1033.
16. Grigor’ev Yu. Three-dimensional Quaternionic Analogue of the Kolosov-Muskhelishvili Formulae. Hypercomplex Analysis: New perspectives and applications, Trends in Mathematics. Eds. S. Bernstein, U. Kaehler, I. Sabadini, F. Sommen. 2014; Birkhauser, Basel, 145–166. https://doi.org/10.1007/978-3-319-08771-9.
17. Grigoriev Yu. Radial integration method in quaternion function theory and its applications. AIP Conference Proceedings. 2015;1648:440003. https://doi.org/10.1063/1.4912654.
18. Yakovlev A., Grigor’ev Yu. Three-dimensional quaternionic Kolosov-Muskhelishvili formulae in infinite space with a cavity. AIP Conference Proceedings. 2020;2293:110008. https://doi.org/10.1063/5.0026655.
19. Grigor’ev Yu., Gurlebeck K., Legatiuk D. Quaternionic formulation of a Cauchy problem for the Lame equation. AIP Conference Proceedings. 2018;1978: 280007. https://doi.org/10.1063/1.5043907.
20. Ostrosablin N.I. Diagonalization of a three-dimensional system of equations in displacements of the linear theory of elasticity of transversally isotropic media. Applied Mechanics And Technical Physics. 2013;54(6):125–145. (In Russ.)
21. Gassmann F. Introduction to seismic travel time methods in anisotropic media. Pure Appl. Geophys. 1964; 58(II):63–113. https://doi.org/10.1007/BF00879140.
22. Annin B.D. A transversely isotropic elastic model of geomaterials. Sib. J. Appl. Ind. Math.2009;12(3):5–14. (In Russ.)
23. Batugin SA, Nirenburg PK. Approximate relationship among the elastic constants of anisotropic rocks, and anisotropy parameters. Fiz.-tekhn. Probl. Razrabotki Polezn. Iskopaemykh. 1972;(1):7–11. (In Russ.)
24. Fedorov F.I. Theory Of Elastic Waves In Crystals. M.: Nauka; 1965. 388 p. (In Russ.)
25. Carrier G.F. The propagation of waves in orthotropic media. Quart. Appl. Math. 1946; 4:160–165.
26. Cameron N., Eason G. Wave Propagation in an Infinite Transversely Isotropic Elastic Solid. Quart. J. Mech. Appl. Mech. 1967; 20(1):23–40. https://doi.org/10.1093/qjmam/20.1.23
27. Misicu M. Representarea ecuatilor echilibrului elastic prin functii monogene de cuaterninoni. Bull. Stiint. Acad. RPR. Sect. st. mat.fiz. 1957; 9(2): 457–470.
28. Grigoriev Yu.M. Solution of spatial static problems of the theory of elasticity by methods of the theory of quaternion functions.: Diss. Cand.Sci., Novosibirsk. 1985. 142 p. (In Russ.)
29. Naumov V.V. Analytical results in the mathematical theory of elasticity: Diss. Cand. Sci., Yakutsk. 1993. 111 p. (In Russ.)
30. Liu Li-Wei, Hong Hong-Ki. Clifford algebra valued boundary integral equations for three-dimensional elasticity. Applied Mathematical Modelling. 2017; 54: 246–267. https://doi.org/10.1016/j.apm.2017.09.031.
Review
For citations:
GRIGOR’EV Yu.M., YAKOVLEV A.M. Transversally isotropic elastic material applicable for permafrost rocks: а case study. Arctic and Subarctic Natural Resources. 2023;28(2):337-345. (In Russ.) https://doi.org/10.31242/2618-9712-2023-28-2-337-345