Cretaceous volcanism of the Khara-Siss field (Verkhoyansk-Kolyma orogenic area)
https://doi.org/10.31242/2618-9712-2019-24-3-6
Abstract
Petrography, petrochemical and geochemical features of the Cretaceous volcanic rocks of the least studied Khara-Siss volcanogenic field, located in the North-east of the Verkhoyansk-Kolyma orogenic area, within the Indigirka extensional belt, are studied in the article for the first time. The volcanogenic stratum is divided into two masses – Early and Late Cretaceous. Dacites and rhyolites having normal alkalinity dominate in the composition of the early Cretaceous volcanic rocks. Late Cretaceous volcanic rocks are represented mainly by trachyandesites and trachyandesites. It is shown that volcanic activity began under the conditions of the active continental margin, and completed under the conditions of intraplate continental riftogenesis with the replacement of crust Early Cretaceous formations by the Late Cretaceous derivatives of mantle magmas, the primary melts of which were formed in deeper horizons of metasomatized mantle. Accordingly, the rocks of high-potassium late-orogenic series were replaced by the derivatives of latite and trachyte series during volcanism evolution, and alkaline lamprophyres completing magmatic activity within the studied area, belong to alkaline-basalt series. Increased concentrations of Rb, Th, U, REE, F, Cl, P in all Late Cretaceous volcanic rocks, that is explained by functioning of hot point and supply of the flow of fluids, related to the magmatic hearths of alkaline-basaltoid composition, to magma generation levels. The geochemical specialization of all the Late Cretaceous volcanic rocks in Au and crystallization under the conditions of high – up to abnormal high activity of chlorine, allows expecting the generation of gold occurrences during the formation of volcanogenic rocks.
About the Authors
Vera Arkadievna TrunilinaRussian Federation
Trunilina Vera Arkadievna, doctor of geological and mineralogical sciences, principal researcher, Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences, 39 Lenina pr.,
Yakutsk, 677980, Russia,
https://orcid.org/0000-0003-0910-2386, v.a.trunilina@diamond.ysn.ru
Sergei Prokopievich Roev
Russian Federation
Roev Sergei Prokopievich, candidate of geological and mineralogical sciences, senior researcher. Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences, 39 Lenina pr.,
Yakutsk, 677980, Russia,
https://orcid.org/0000-0003-3911-2491, sproev@mail.ru
References
1. Stavskiy A.P. Nizneindigirskaia riftovaia zona – novyi element struktury Severo-Vostoka SSSR // Docl. AN SSSR. 1982. V. 262, N 6. P. 1443-1446.
2. Geologicheskaia karta SSSR. List R-53-55 (Deputatskiy). Maschtab 1:1 000 000 (novaia seria). Ob`iasnitelnaia zapiska. SPb, 1992. 111 p.
3. Tectonika, geodinamika i metallogeniia territorii Respubliki Sakha (Yakutia) M.: MAIK “Nauka/Interperiodika”, 2001, 571 s.
4. Trunilina V.A., Orlov Yu.S., Roev S.P. Melovoi vulkanism Dzakhtardakhskogo polia (Verkhoyano-Kolymskaya orogennaia oblast`) // Otechestvennaia geologiia. 2007. N 1. P. 83–92.
5. Trunilina V.A., Orlov Yu.S., Roev S.P. Petrologiia daek Dzakhtardakhskogo vulkanogennogo polia I ikh vzaimosvyaz`s orudeneniem // Otechestvennaia geologiia. 2016. N 6. P. 35–42.
6. Nekrasov I.Ya. Magmatism i rudonosnost` severozapadnoi chasti Verkhoiano-Chukotskoi skladchatoi oblasti. M.: Nauka, 1962.
7. Samusin A.I. Gosudarstvennaia geologicheskaia karta SSSR m-ba 1:200000. Seriia Yano-Indigirskaia. List R-54-XXIX-XXX. Ob`yasnitel`niia zapiska. M., 1979.
8. Yavuz F. Win Pyrox: A Windows program for pyroxene calculation classification and thermobarometry // American Mineral. 2013. V. 98. P. 1338–1359. DOI: 10.2138/am.2013.4292
9. Ryabov V.V., Zolotukhin V.V. Mineraly differentzirovannykh trappov: monografiia. Novosibirsk: Nauka, 1977.
10. Rudilfi R., Renzolli A. Calcik ampiboles in calcalkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130 °C and 2,2 Gpa // Contrib. Miner. Petrol. 2012. V. 163. P. 877– 895. DOI: 10.1007/s00410-011-0704-6
11. Henry D.A., Guidotti Ch.V., Thompson J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implication for geothermometry and Tisubstitution mechanismus // Amer. Miner. 2005. V. 90. P. 316–328. DOI: 10.2138/am.2005.1498
12. Uchida E., Endo S., Makino M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits // Resource Geology. 2007. V. 57, N 1. P. 47–56. DOI: 10.1111/j.1751-3928.2006.00004.x
13. Troshin Yu.P., Grebenshikova V.I., Antonov A.Yu. Letuchie komponenty v biotitakh i metallogenicheskaia specializacziia intruzii // Mineralogicheskie kriterii oczenki rudonosnosti // The mineralogical criteria of ore content. L.: Nauka, 1981. P 73–83.
14. Wones D.R., Eugster H.P. Stability of biotite: experiment, theory and application // Amer. Mineral. 1985. N 9. P. 1228–1272.
15. Brown G.G. A comment on the role of water in the partial fusion of crystal rocks // Earth and Planet. Sci. Lett. 1970. V. 9. P. 13–22.
16. Ovchinnikov L.N. Prikladnaia geokhimiia. M.: Nedra, 1990.
17. French W.J., Cameron E.P. Calculation on the temperature of crystallization of silicates from basaltic melts // Mineral Mag. 1981. V. 44, N 333. P. 19–26.
18. Jung S., Pfander J.A. Source composition and melting temperatures of orogenic granitoids – constrains from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry // Europen Journal of Mineralogy. 2007. N 1. P. 5–40. DOI: 10.1127/0935-1221/2007/0019-1774
19. Perchuk L.L., Aranovich L.A., Kosiakova N.A, Termodinamitheskie modeli zarozdenia i evoluzii basal`tovych magm // Vestnik MGU. Seria Geol. 1982. N 4. P. 3–26.
20. Piskunov B.M., Abdurakhmanova A.I., Kim Ch.U.
21. Sootnoshenie “sostav–glubina” dlia vulkanov Kuril`skoi ostrovnoi dugi i ego petrologicheskoe znachenie // Volcanology and seismology. 1979. N 4. P. 57–67.
22. Wilson M. Igneous petrogenesis. London. Unwin Hayman, 1989.
23. Whiteford D.G., Nicholls I.A., Taylor S. R. Spatial variations in the geochemistry of quaterrary lavas across the Sunda arc in Java and Bali // Contribs. Mineral. and Petrol. 1979. V. 70. P. 341–356.
24. Borodin L.S. Petrokhimia magmaticheskikh serii. M.: Nauka, 1987. 241 p.
25. Datzenko V.M. Petrogeokhimicheskaia tipizatziia granitoidov yugo-zapadnogo obramleniia Sibirskoi platformy // Materialy Vtorogo Vcerossiiskogo petrograficheskogo soveshaniia. V. 2. Syvtyvkar, 2000. P. 270–274.
26. Gerdes A., Worner G., Henk A. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith // J. Geol. Soc. London. 2000. V. 157. P. 577–587.
27. Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram // Chemical Geology. 1986. V. 56. P. 207–218.
28. Drill S.I., Kuzmin M.I., Tsipukova S.S., Zonenshain L.P. Geochemistry of basalts from the West Woodlark, Lau and Manus basins: implication for their petrogenesis and source rock composition // Marine Geology. 1997. V. 142. P. 57–83.
29. Teilor S.R., McLennan S.M. Kontinental`naia kora, ee sostav i evolucziia [Continental crust, composition and evolution]. M.: Mir, 1988.
30. Lesnov F.P. Redkozemel`nye elementy v ul`tramaficheskikh i maficheskikh porodakh i ikh mineralakh. Kniga 1. Glavnye tipy porod, porodoobrazuyushie mineraly. Novosibirsk: Geo, 2009. 403 p.
Review
For citations:
Trunilina V.A., Roev S.P. Cretaceous volcanism of the Khara-Siss field (Verkhoyansk-Kolyma orogenic area). Arctic and Subarctic Natural Resources. 2019;24(3):64-79. (In Russ.) https://doi.org/10.31242/2618-9712-2019-24-3-6