Preview

Arctic and Subarctic Natural Resources

Advanced search

Materials Science of the North and the Artic for the industry of the Republic of Sakha (Yakutia)

https://doi.org/10.31242/2618-9712-2023-28-4-627-640

Abstract

An overview of the research in the field of Northern and Arctic Materials sciences is provided, including the design and safe operation of materials for complex technical systems in extreme environments. The discussion covers the fundamental principles of material design, including structure at different levels of organization and scales, and the development of theoretical and numerical models. Additionally, the optimal ratios of components and technological stages are discussed to obtain specific properties such as corrosion resistance, wear, cold and frost resistance, strength, and plasticity. These efforts aim to ensure the reliable operation and resource efficiency of machines and structures in harsh arctic and subarctic conditions.

About the Authors

V. V. Lepov
Larionov Institute of Physical and Technical Problems of the North, Siberian Branch of the Russian Academy of Sciences
Russian Federation

LEPOV, Valeriy Valerievich, Dr. Sci. (Eng.), Chief Researcher

ResearcherID: F-9875-2011

Scopus Author ID: 6508081764

RISC AuthorID: 1747

Yakutsk



A. A. Okhlopkova
Ammosov North-Eastern Federal University
Russian Federation

OKHLOPKOVA, Aitalina Alexeevna, Dr. Sci. (Eng.), Professor, Chief Researcher

Researcher ID: A-6594-2014

Scopus Author ID: 57856

Yakutsk



References

1. Zhukov V.V., Karpov A.A., Karpov I.A., et al. Analysis of perspective materials trends for the oil and gas industry. PROneft. Professionally about Oil. 2022;7(3):136– 147. (In Russ.) https://doi.org/10.51890/2587-7399-2022-7-3-136-147

2. Lepov V., Petrov N., Pavlov N. System analysis of the modern materials and technologies in power engineering and industry for the Russian North and Arctic. AIP Conference Proceedings. 2023;2552(1):080026. https://doi.org/10.1063/5.0112831

3. Larionov V.P., Kovalchuk V.A. Cold resistance and wear of machine parts and welded joints. Novosibirsk: Nauka; Sibirskoe otdelenie. 1976. 207 p. (In Russ.)

4. Larionov V.P. Welding and problems of ductilebrittle transition. Novosibirsk: SB RAS; 1998. 593 p. (In Russ.)

5. Grigorev A.V., Lepov V.V. Reliability and service life of technical systems in extreme operating conditions of the Arctic and Subarctic: railway transport. Novosibirsk: SB RAS; 2018. 112 p. (In Russ.)

6. Buznik V.M. Arctic materials science. Tomsk: Publishing House of the Tomsk State University; 2018. 44 p. (In Russ.)

7. Qader I. N., Kök M., Dagdelen F., Y. Aydoğdu e. A review of smart materials: researches and applications. El-Cezeri . 2019;6(3):755–788. https://doi.org/10.31202/ecjse.562177

8. Lepov V.V., Petrov N.A., Prokhorov D.V., et al. Concept of integrity, reliability and safety of energy and transport systems for cold climate regions. E3S Web of Conferences. 2020;209:05009. https://doi.org/10.1051/e3sconf/202020905009

9. Hughes T.J.R. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering. 1995;127(1-4):387–401. https://doi.org/10.1016/0045-7825(95)00844-9

10. Lepov V.V., et al. Multilevel hierarchical evolutionary modeling of materials destruction processes. Vychislitelnye tekhnologii. 2008;13(3):315–322. (In Russ.)

11. Panin V.E., Egorushkin V.E. Deformable solid as a nonlinear hierarchically built system. Physical Mesomechanics. 2011; 14(3):7–26. (In Russ.)

12. Weinan E., Bjorn E., Zhongyi H. Heterogeneous multiscale method: a general methodology for multiscale modeling. Physical Review B. 2003;67(9):092101. https://doi.org/10.1103/PhysRevB.67.092101

13. Fish J., Wagner G.J., Keten S. Mesoscopic and multiscale modelling in materials. Nature Materials. 2021; 20:7740786. https://doi.org/10.1038/s41563-020-00913-0

14. Lepov V.V., Bisong S.M., Golykh R.N. Foundation of multilevel apploach to fracture modeling for materials with submicrostructure applicable for Arctic and Subarctic environment. Arctic and Subarctic Natural Resources . 2023;28(1):156–171. (In Russ.) https://doi.org/10.31242/2618-9712-2023-28-1-156-171

15. Efendiev Ya., Hou Th.Y. Multiscale finite element methods: theory and applications. NY: Springer New York; 2009. 234 p. https://doi.org/10.1007/978-0-387-09496-0

16. Akimova M.P., Sharin P.P. The structure of diamond-containing material based on tungsten carbide impregnated with an iron – carbon eutectic melt. Bulletin of PNRPU. Mechanical engineering, materials science. 2022;24(3): 25–32. (In Russ.) https://doi.org/10.15593/2224-9877/2022.3.03

17. Solntsev Yu.P, Ermakov B.S., Sleptsov O.I. Materials for Low and Cryogenic Temperatures . St.-Petersburg: Khimizdat; 2008. 767 р. (In Russ.)

18. Lepov V., Arkhanelskaja E., Achikasova V. Kinetics of brittle fracture in metals under the influence of hydrogen. Procedia Structural Integrity. 2019;20:24–29. https://doi.org/10.1016/j.prostr.2019.12.110

19. Sleptsov O.I., Sivtsev M.N., Sleptsov G.N., et al. Slow destruction of welded joints during welding at naturally low temperatures condition. Welding International. 2020;34(1-3):40–44. https://doi.org/10.1080/09507116.2021.1918477

20. Ivanov A.M. Low-temperature fracture of low-alloy steel after severe plastic deformation. Russian Engineering Research. 2020;40(1):33–37. https://doi.org/10.3103/S1068798X20010098

21. Okhlopkova A.A., Sleptsova S.A., Nikiforova P.G., et al. Main directions for research on the development of tribotechnical composites used in the Arctic Regions (Experience of North-Eastern Federal University in Yakutsk). Inorganic Materials: Applied Research. 2019;10(6):1441– 1447. https://doi.org/10.1134/S2075113319060157

22. Petrova N.N., Portnyagina V.V., Mukhin V.V., et al. Preparation and improved physical characteristics of propylene oxide rubber composites. Molecules. 2018;23(9):2150. https://doi.org/10.3390/molecules23092150

23. Sokolova M.D., Davydova M.L., Shadrinov N.V. The modification of rubber compounds with nanodisperse graphites. International Polymer Science and Technology . 2015; 42(3):27–30. https://doi.org/10.1177/0307174X1504200306

24. Startsev O.V., Lebedev M.P. Glass-transition temperature and characteristic temperatures of α transition in amorphous polymers using the example of poly(methyl methacrylate). Polymer Science, Series A. 2018;60(6): 911–923. https://doi.org/10.1134/S0965545X19010073

25. Buznik V.M., et al. Fluoropolymer materials. Tomsk: NTL Publishing House; 2017. 600 p. (In Russ.)

26. Kirillina I.V., et al. Nanocomposites based on polytetrafluoroethylene and ultrahigh molecular weight polyethylene: A brief review. Bulletin of the Korean Chemical Society . 2014;35(12):3411–3420. https://doi.org/10.5012/bkcs.2014.35.12.3411

27. Kapitonov E.A., Petrova N.N., Mukhin V.V., et al. Enhanced physical and mechanical properties of nitrile-butadiene rubber composites with N-cetylpyridinium bromide-carbon black. Molecules. 2021;26(4):805. https://doi.org/10.3390/molecules26040805

28. Mukhin V.V., et al. Study of the performance of epichlorohydrin rubber-based elastomers in the hydrocarbon environment under the cold climate . Kauchuk i Rezina. 2018;77(5):314–318.

29. Shadrinov N.V. Effect of thermal aging on deformation properties of nitrile-butadiene rubber: atomic force microscopy data. Inorganic Materials: Applied Research. 2019;10(1):53–57. https://doi.org/10.1134/S2075113319010283

30. Okhlopkova A.A., et al. Modification of polymers with ultradisperse compounds. Yakutsk: Publishing House SB RAS; 2003. 222 p. (In Russ.)

31. Petrova N.N., Jungkeun Lee, Portnyagina V.V., et al. Antiswelling and frost-resistant properties of a zeolite-modified rubber mechanical seal at low temperature. Bulletin of the Korean Chemical Society. 2015;36(2): 464–467. https://doi.org/10.1002/bkcs.10075

32. Danilova S.N., Yarusova S.B., Kulchin Y.N., et al. UHMWPE/CaSiO 3 Nanocomposite: mechanical and tribological properties. Polymers . 2021;13(4):570. https://doi.org/10.3390/polym13040570

33. Spiridonov A.M., Sokolova M.D., Fedoseeva V.I., et al. Adsorption complexes ‘zeolite–cationic surfactant’: properties and surface activity in a polymer composite material based on ultra-high-molecular-weight polyethylene. Materials Today Chemistry. 2021;(20):100441. https://doi.org/10.1016/j.mtchem.2021.100441

34. Borisova R.V., Spiridonov A.M., Okhlopkova T.A., et al. Bromination of UHMWPE surface as a method of changing adhesion to nanoparticles. Materials Today Communications. 2018;14:65–71. https://doi.org/10.1016/j.mtcomm.2017.12.014

35. Okhlopkova A.A., Vinogradov A.V., Pinchuk L.S. Plastics filled with ultrafine inorganic compounds. Gomel: MPRI; 1999. 164 p. (In Russ.)

36. Cherskiy I.N. The use of fluoroplastic-4 in sealing units operating at low temperatures. In: Physical and technical problems of transport in the North (Collection of papers). Yakutsk: IPTPN SB AS USSR; 1971:93–107. (In Russ.)

37. Vasilev A.P., Struchkova T.S., Nikiforov L.A., et al. Mechanical and tribological properties of PTFE composites with carbon fiber and layered silicate fillers. Molecules . 2019;24(2):224. https://doi.org/10.3390/molecules24020224

38. Nebogatikova N.A., Antonova I.V., Prinz V.Ya., et al. Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties. Physical Chemistry Chemical Physics. 2015;17(20):13257– 13266. https://doi.org/10.1039/C4CP04646C

39. Smagulova S.A., Egorova M.N., Tomskaya A.E., Kapitonov A.N. Synthesis of carbon dots with tunable luminescence. Journal of Material Science&Engineering . 2017;6(5):1000376. https://doi.org/10.4172/2169-0022.1000376

40. Alexandrov G.N., Smagulova S.A., Kapitonov A.N., et al. Thin partially reduced oxide-graphene films: structural, optical, and electrical properties. Nanotechnologies in Russia. 2014;9(7-8):363–368. https://doi.org/10.1134/S1995078014040028

41. Nikolaev D.V., Evseev Z.I., Smagulova S.A., Antonova I.V. Electrical Properties of Textiles Treated with Graphene Oxide Suspension. Materials. 2021;14(8):1999. https://doi.org/10.3390/ma14081999


Review

For citations:


Lepov V.V., Okhlopkova A.A. Materials Science of the North and the Artic for the industry of the Republic of Sakha (Yakutia). Arctic and Subarctic Natural Resources. 2023;28(4):627-640. (In Russ.) https://doi.org/10.31242/2618-9712-2023-28-4-627-640

Views: 280


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)