Immiscible silica- and iron-rich melts at the Kildyam volcano complex (central Yakutia, Russia)
https://doi.org/10.31242/2618-9712-2020-25-2-2
Аннотация
A Kildyam Volcanic Complex was discovered in the natural outcrops and quarries of the Kangalassky terrace in the left bank of the Lena River 26 km north of Yakutsk. The manifestations of volcanism are represented by magnetite rich lava flows, agglomerate, pyroclastic breccia and tuff of andesites and dacites. Kildyam iron oxide deposit has been interpreted as lava flows and feeder dykes formed from ironrich pyroxenite magma as a result of liquid immiscibility. Associated with andesitic lavas mineralization occur as massive, taular bodies and stratified pyroclastic ores. Our research confirmed that tholeiitic trend of iron-rich pyroxenites evolves towards two immiscible liquids – magnetite lava and melilitite matrix. Further evolution leads to the separation of native iron and the transition of lavas to the calc-alkaline trend. Immiscibility of iron- and silica-rich melts during andesitic volcanism led to the formation of exotic varieties of magnetite-rich volcanic rocks. Fe-Ti-spinel mineral group is widespread at the Kildyam Volcanic Complex in the host andesite and in the local magnetite orebodies. The presence of native iron liquids as melt inclusions in clinopyroxene and plagioclase phenocrysts, magnetite- and silica-rich globules in andesite matrix, demonstrates the occurrence of liquid immiscibility in the early stage evolution of tholeiitic magmas. Lava flows saturated with native iron, magnetite, troilite and pyrite, native iron usually spherical in shape. According to microprobe analysis native iron contains Co – 0.04–2.89 %; Ni – 0.01–1.09 %; Pt – up to 1.45 %; Ir – up to 2.97 %; Pyrite contains Au – 0.11–2.25 %; Pt – 0.57–2.88 %; Ag – 0-1.18 %; Troilite contains Au – 0–3.15 %; Pt – 0–2.02 %; Ag – 0–1.68 %. In some parts of lava flows the amount of the magnetic fraction reaches 25–37 % of the total volume. In andesitic variolithic lavas the Pt content determined by the ICP-MS method – 0.11 g/t. A mineral phase enriched in Au (6.85 %) and Hg (2.94 %) was diagnosed in the Fe2TiO4 – MgAl2O4 spinelide. On the flanks of the volcanic field, alluvial gold is known in the Zolotinka stream (Cape Kangalassky) and in Paleogene sediments, discovered by the KhatyngYuryakh quarry 8 km from the center of Yakutsk by A.P. Smelov and A.A. Surnin. Most of the analyzed gold fineness varies from 846 to 996. Among high-fineness gold there is an Ag alloy – electrum which is typical for gold-silver mineralization. Discovered andesite associated iron-oxide ± gold and silver mineralization in Central Yakutia allows to refer it to analogous El Laco deposit in High Andes.
Об авторе
А. V. KostinРоссия
KOSTIN Aleksey Valentinovich, doctor of geological and mineralogical sciences, head of laboratory
39 Lenina pr., Yakutsk, 677980
Список литературы
1. Kepezhinskas V.V., Luchitsky I.V. Continental volcanic associations of Central Mongolia. 1974.
2. Maslov V.K. Gold in Jurassic deposits of the Vilyui syneclise // Geology and geophysics. 1995. Vol. 36(1).
3. Kostin A.V., Grinenko V.S., Oleinikov O.B., Jelonkina M.S., Krivoshapkin I.I., Vasiljeva A.E. The first data about the manifestation of the Upper Cretaceous volcanism of transition zone «Siberian platform – VerkhoyanskKolyma folded area» // Arctic and Subarctic Natural Resources. 2015. Vol. 1(77). P. 30–36. https://elibrary.ru/item.asp?id=23457540
4. Kostin A.V., Trunilina V.A. Volcanogenic creations of Kangalassky terrace (left bank of the Lena river. Central Yakutia) // Advances in Current Natural Sciences. 2018. Vol. 5. P. 92–100. https://doi.org/10.17513/use.36761
5. Goldbraikh G.I., Todorovskaya V.N. On the discovery of tufogenic rocks in the Lower Cretaceous sediments of the river basin. Sitte // Geology and oil and gas potential of Western Yakutia. Leningrad: Proceedings VNIGRI. 1966. Is. 249. P. 182–185.
6. Kossovskaya A.G., Shutov V.D., Muravyov V.P. Mesozoic and Upper Paleozoic sediments of the Western Verkhoyansk and Vilyui depression // Transactions of Geol. Institute of Academy of Sciences of the USSR. 1960. Vol. 34. 276 p.
7. Kostin A.V. A new geological feature of volcanic origin in the Lena-Vilyui watershed (East of Siberian platform) // Advances in Current Natural Sciences. 2017. Vol. 2. P. 100–105. https://doi.org/10.18411/a-2017-049
8. Frietsch R. On the magmatic origin of iron ores of the Kiruna type // Economic Geology. 1978. Vol. 73(4). P. 478–485. http://doi.org/10.2113/gsecongeo.73.4.478
9. Hitzman M.W., Oreskes N. and Einaudi M.T. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu–U–Au–REE) deposits // Precambrian Research. 1992. Vol. 58. P. 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
10. Hou T., Charlier B., Namur O., Schütte P., SchwarzSchampera U., Zhang Z., Holtz F. Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron–fluorine deposit. South Africa // Geochimica et Cosmochimica Acta. 2017. Vol. 203. P. 303–322. https://doi.org/10.1016/j.gca.2017.01.025
11. Philpotts A.R. Liquid immiscibility in silicate melt inclusions in plagioclase phenocrysts // Bulletin de Minéralogie. 1981. Vol. 104. P. 317–324.
12. Philpotts A.R. Compositions of immiscible liquids in volcanic rocks // Contributions to Mineralogy and Petrology. 1982. Vol. 80. P. 201–218.
13. Tornos F., Velasco F., Hanchar J.M. Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit. Chile // Geology. 2016. Vol. 44. P. 427–430. https://doi.org/10.1130/G37705.1
14. Parfenov L.M., Prokopiev A.V., Gaiduk V.V. Cretaceous frontal thrusts of the Verkhoyansk fold belt, eastern Siberia // Tectonics. 1995. Vol. 14(2). P. 342-358.
15. Parfenov L.M., Kuzmin M.I. (Eds.) Tectonics, Geodynamics, and Metallogeny of the Sakha Republic (Yakutia) Territory. Moscow, MAIK Nauka/Interperiodika: Russia. 2001. 571 p. ISBN 5-7846-0046-X. https://elibrary.ru/item.asp?id=22399198
16. Grinenko V.S., Kamaletdinov V.A., Shcherbakova O.I. Section correlation scheme // Geological map of Yakutia on a scale of 1: 500.000. Central Yakutsk block. Sheet P-51-A. B. SPb.: St. Petersburg Card Factory, VSEGEI. 2000.
17. Grinenko V.S. Cretaceous continental formations of the east of the Siberian platform // Otechestvennaya Geologiya. 2007. Vol. 1. P. 110–118.
18. Grinenko V.S., Knyazev V.G. New data on stratigraphy and zoning of Jurassic deposits of the western periphery of the Verkhoyansk-Kolyma folded region // Bulletin of the State Committee for Geology. Materials on geology and minerals of the Republic of Sakha (Yakutia). 2010. Vol. 1 (9). P. 26–38.
19. Smelov A.P., Andreev A.P., Altukhova Z.A., Babushkina S.A., Bekrenev K.A., Zaitsev A.I., Izbekov E.D., Koroleva O.V., Mishnin V.M., Okrugin A.V., Oleinikov O.B., and Surnin A.A. Kimberlites of the Manchary pipe: a new kimberlite field in Central Yakutia // Russian Geology and Geophysics. 2010. Vol. 51(1). P. 153–159.
20. Polyansky O.P., Prokopiev A.V., Koroleva O.V., Tomshin M.D., Reverdatto V.V., Babichev A.V., Sverdlova V.G., Vasiliev D.A. The nature of the heat source of mafic magmatism during the formation of the Vilyui rift based on the ages of dike swarms and results of numerical modeling // Russian Geology and Geophysics. 2018. Vol. 59. P. 1217–1236. http://dx.doi.org/10.1016/j.rgg.2018.09.003
21. Afanasiev V.P., Pokhilenko N.P., Grinenko V.S., Kostin A.V., Malkovets V.G., Oleinikov O.B. Kimberlitic magmatism in the south-western flank of the Vilui basin // RAS reports. Earth sciences. 2020. Vol. 490(2). P. 5–9. http://dx.doi.org/10.7868/S2686739720020036
22. Smelov A.P., Surnin A.A. Gold of the city of Yakutsk // Science First Hand. 2010. Vol. 4(34). P. 16–19.
23. Grinenko V.S., Kostin A.V., Kirichkova A.I., Zhelonkina M.S. Boundary Upper Jurassic-Lower Cretaceous rocks in the eastern Siberian craton: New data // Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Ser.: Geologiya. 2018. Vol. 2. P. 48–55. https://doi.org/10.18411/vgu-sg-2018-2-48-55
24. Silber A., Bar-Yosef B., Singer A., Chen Y. Mineralogical and chemical composition of three tuffs from northern Israel // Geoderma. 1994. Vol. 63(2). P. 123–144. https://doi.org/10.1016/0016-7061(94)90002-7
25. Stück H., Forgó L.Z., Rüdrich J., Siegesmund S., Török A. The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions // Environmental geology. 2008. Vol. 56(3-4). P. 699–713. https://doi.org/10.1007/s00254-008-1337-6
26. Horwell C.J., Williamson B.J., Llewellin E.W., Damby D.E., Le Blond J.S. The nature and formation of cristobalite at the Soufrière Hills volcano. Montserrat: implications for the petrology and stability of silicic lava domes // Bulletin of Volcanology. 2013. Vol. 75(3). 696 p. https://doi.org/10.1007/s00445-013-0696-3
27. Reich M., Zúñiga A., Amigo Á., Vargas G., Morata D., Palacios C., Parada A.M., Garreaud R.D. Formation of cristobalite nanofibers during explosive volcanic eruptions // Geology. 2009. Vol. 37(5). P. 435–438. https://doi.org/10.1130/G25457A.1
28. Schipper C.I., Castro J.M., Tuffen H., Wadsworth F.B., Chappell D., Pantoja A.E., Simpson M.P., Le Ru E.C. Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile) // Bulletin of Volcanology. 2015. Vol. 77(5). P. 5–34. https://doi.org/10.1007/s00445-015-0925-z
29. Kostin A.V., Trunilina V.A., Grinenko V.S. Geological model of the Tyugeninsky field of volcanic rocks (east of the Siberian platform) // Geology and mineral resources of the North-East of Russia: materials of the VII All-Russian scientific and practical conference dedicated to the 60th anniversary of the Institute of Geology of Diamond and Noble Metals of the Siberian Branch of the Russian Academy of Sciences. April 5–7 2017: in 2 volumes. Yakutsk: SVFU Publishing House. 2017. V. 2. P. 154–160. https://www.elibrary.ru/item.asp?id=30628694
30. Chin E.J., Shimizu K., Bybee G.M., Erdman M.E. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective // Earth and Planetary Science Letters. 2018. V. 482. P. 277–287. https://doi.org/10.1016/j.epsl.2017.11.016
31. LeBas M.J., LeMaitre R.W., Streckeisen A. and Zanetin B. A chemical classification of vofcanic rocks based on the total alkali-silica diagram // J. Petrol. 1986. Vol. 27. P. 745–750.
32. Irvine T.N., Baragar W.R. A guide to the chemical classification of the common volcanic rocks // Canadian Journal of Earth Sciences. 1971. Vol. 8. P. 523-548. https://doi.org/10.1139/e71-055
33. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geological Society. London. Special Publications. 1989. Vol. 42(1). P. 313–345.
34. Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho. Zr/Hf. and lanthanide tetrad effect // Contributions to Mineralogy and Petrology 1996. Vol. 123(3). P. 323–333. https://doi.org/10.1007/s004100050159
35. Tomshin M.D., Kopylova A.G., Konstantinov K.M., Gogoleva S.S. Basites of the Vilyui paleorift: geochemistry and sequence of intrusive formation // Russian Geology and Geophysics. 2018. Vol. 59(10). P. 1204–1216. https://doi.org/10.1016/j.rgg.2018.09.002
Рецензия
Для цитирования:
Kostin А.V. Immiscible silica- and iron-rich melts at the Kildyam volcano complex (central Yakutia, Russia). Природные ресурсы Арктики и Субарктики. 2020;25(2):27-46. https://doi.org/10.31242/2618-9712-2020-25-2-2