Geochemistry and the form of «invisible» gold in pyrite from metasomatites of the Khangalas deposit, North-East of Russia
https://doi.org/10.31242/2618-9712-2020-25-3-1
Аннотация
The Khangalas orogenic gold deposit is located in the central part of the Yana–Kolyma gold belt, Northeastern Russia. Gold occurs in the native form in quartz veins, and in the so-called invisible form in pyrite and arsenopyrite of quartz-carbonate-sericite metasomatites. Pyrite and arsenopyrite are the most common ore minerals of the deposit. For the vein-veinlet and veinlet-disseminated types of mineralization of the Khangalas deposit, four generations of pyrite and two generations of arsenopyrite were identified. Despite the widespread occurrence of disseminated pyrite-arsenopyrite mineralization of metasomatites, its mineralogical-geochemical features, isotope-geochemical characteristics and mechanisms of location remain insufficiently studied, and its origin is debatable. The article presents the first results obtained in the studies of the geochemistry of the most common and industrially significant gold-bearing pyrite (Py3) from metasomatites. The elementary composition and morphology of crystals were studied with a JEOL JSM6480LV electron scanning microscope equipped with an Energy 350 Oxford energy dispersion spectrometer. Trace elements in pyrites were determined using a New Wave Research UP-213 laser ablation system (USA), coupled with an Agilent 7700x quadrupole mass spectrometer (Agilent Technologies, USA). The total amount of impurities in pyrite-3 is 0.48–2.12 %, with an average of 1.11 %. The content of Au in a Py3 gross sample determined by the atomic absorption method is up to 39.2 ppm, silver up to 17.38 ppm. Typomorphic trace elements according to LA-ICP-MS analysis are As (4530–18790 ppm), Ni (8.2–1298 ppm), Co (0.23– 505 ppm), Cu (0.5–19 ppm), Zn (3.5–6.4 ppm), Pb (0.5–860 ppm), Sb (0.3–407 ppm), Ag (0.008–1.01 ppm) and Au (0.1–15.9 ppm). Au is closely correlated with As (r = 0.9). Of ~ 100 grains of pyrite-3 examined, ~ 20 % contain microinclusions of galena and sphalerite in defects and crystal growth zones; tetrahedrite and freibergite are recorded in single samples. A microinclusion of native gold Au0 was found only in one sample; it has a size of about 15 μm, fineness of 827 ‰. On the Au – As (mol %) diagram, the data points for Py3 samples from the Khangalas deposit fall below the solubility limit of Au in a solid. This indicates the form of “invisible” gold found in Py3 mainly as structurally bound Au+. The presence of gold-bearing pyrite in metasomatites is of great practical importance and makes it possible to significantly expand the raw material potential of the Khangalas ore cluster
Ключевые слова
Об авторах
M. V. KudrinРоссия
KUDRIN Maxim Vasilievich, researcher
39 Lenin pr., Yakutsk 677000
L. I. Polufuntikova
Россия
POLUFUNTIKOVA Lena Idenenovna, Candidate of geological and mineralogical sciences, senior researcher, 46 Kulakovsky str., 677000 Yakutsk;
39 Lenina pr., Yakutsk 677000
V. Yu. Fridovsky
Россия
FRIDOVSKY Valery Yuryevich, Doctor of geological and mineralogical sciences, director
39 Lenin pr., Yakutsk 677000
V. V. Aristov
Россия
ARISTOV Vasily Vasilievich, Candidate of geological and mineralogical sciences, leading researcher
35 Staromonetny Lane, Moscow 119017
Ya. A. Tarasov
Россия
TARASOV Yaroslav Alekseevich, postgraduate student, leading engineer
39 Lenin pr., Yakutsk 677000
Список литературы
1. Goryachev N.A., Pirajno F. Gold deposits and gold metallogeny of Far East Russia // Ore Geology Reviews. 2014. Vol. 59. P. 123–151. DOI: 10.1016/j.oregeorev. 2013.11.010.
2. Goryachev N.A., Sotskaya O.T., Mikhalitsyna T.I., Goryacheva E.M., Manshin A.P. Estimation of Au-PtPd-Ni in ores of typical deposits (Natalka, Degdekan) in the black shale strata of the Yana-Kolyma gold belt // Problems of Minerageny of Russia (special issue of the electronic journal Vestnik ONZ RAS). M.: GC RAS. 2012. P. 325–336. DOI:10.2205/2012minerageny-2012 (in Russian).
3. Volkov A.V., Sidorov A.A. Invisible gold // Bulletin of the Russian Academy of Sciences. 2017. Vol. 87, No. 1. P. 40–49. DOI: 10.7868/S0869587317010121 (in Russian).
4. Fridovsky V.Y., Prokopiev A.V. Tectonics, geodynamics and gold mineralization of the eastern margin of the North Asia Craton // Geological Society, London, Special Publications. 2002. Vol. 204, No. 1. P. 299–317. DOI: 10.1144/GSL.SP.2002.204.01.17.
5. Fridovsky V.Y., Kudrin M.V., Polufuntikova L.I. Multi-stage deformation of the Khangalas ore cluster (Verkhoyansk-Kolyma folded region, northeast Russia): ore-controlling reverse thrust faults and post-mineral strike-slip faults // Minerals. 2018. Vol. 8, No. 7. P. 270. DOI: 10.3390/min8070270.
6. Tyukova E.E., Voroshin S.V. Composition and paragenesis of arsenopyrite in deposits and host rocks of the Upper Kolyma region (to the interpretation of the genesis of sulfide associations). Magadan: NEISRI FEB RAS, 2007. 107 p. (in Russian).
7. Tyukova E.E., Voroshin S.V. Isotopic composition of sulfur in sulfides from ores and host rocks of the Upper Kolyma region (Magadan region) // Russian Journal of Pacific Geology. 2008. Vol. 27, No. 1. P. 29–43 (in Russian).
8. Goryachev N.A., Vikentyeva O.V., Bortnikov N.S., Prokofiev V.Yu., Alpatov V.A., Golub V.V. World-class Natalka gold deposit: REE distribution, fluid inclusions, stable oxygen isotopes and ore formation conditions (NorthEast of Russia) // Gеologiya Rudnyh Mеstorozhdеnij. 2008. Vol. 50. No. 5. P. 414–444 (in Russian).
9. Gamyanin G.N., Fridovsky V.Y., Vikent’eva O.V. Noble-metal mineralization of the Adycha-Taryn metallogenic zone: Geochemistry of stable isotopes, fluid regime, and ore formation conditions // Russian Geology and Geophysics. 2018. Vol. 59, No. 10. P. 1271–1287. DOI: 10.15372/GiG20181006.
10. Fridovsky V.Yu., Gamyanin G.N., Polufuntikova L.I. Sana gold-quartz deposit of the Taryn ore cluster // Razvedka i okhrana nedr. 2013. No. 12. P. 3–7 (in Russian).
11. Fridovsky V.Yu., Gamyanin G.N., Polufuntikova L.I. Structures, mineralogy and fluid formation mode of ores of the polygenic Malo-Taryn gold ore field (North-East of Russia) // Russian Journal of Pacific Geology. 2015. V. 34, No. 4. P. 39–52 (in Russian).
12. Babkin P.V., Gelman M.L., Veldyaksov F.F., Pavlyuchenko L.A. Prospects for identifying gold mineralization in sulfidization zones in the black shale strata of the North-East USSR // Kolyma. 2001. No 2. P. 14–22 (in Russian).
13. Izmailov L.I. Pyrrhotite mineralization of metalbearing zones of the Kolyma river basin. Novosibirsk: Nauka, 1976. 120 p. (in Russian).
14. Goryachev N.A., Sotskaya O.T., Ignatiev A.V. About sulfide mineralization of the zones of large faults of the Yana-Kolyma orogenic belt // Bulletin of the Northeast Scientific Center of the FEB RAS. 2020. No. 1. P. 11 (in Russian).
15. Kudrin M.V. The disseminated mineralization of the Khangalas gold deposit (Yana-Kolyma gold-bearing belt) // New to the knowledge of ore processes: a collection of the All-Russian conference materials. 2018. P. 221–223 (in Russian).
16. Rozhkov I.S., Grinberg G.A., Gamyanin G.A. et al. Late Mesozoic magmatism and gold mineralization of the Upper Indigirsky region. M.: Nauka, 1971. 238 p. (in Russian).
17. Amuzinsky V.A., Anisimova G.S., Zhdanov Yu.Ya. Native gold of Yakutia, Upper Indigirsky District, Novosibirsk: Nauka, 1992. 184 p. (in Russian).
18. Gamyanin G.N. Mineralogical and genetic aspects of gold mineralization of the Verkhoyansk–Kolyma Mesozoids. M.: GEOS, 2001. 222 p. (in Russian).
19. Akimov G.Yu. Zonal halos of pyritization of the Khangalas gold-quartz deposit (Verkhne-Indigirsky district) as an indicator of polygenicity and polychronism in the formation of the mineral complex // New ideas in Earth sciences. Proceedings of the V international conference, 2001 (in Russian).
20. Wilson S.A., Ridley W.I., Koenig A.E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique // Journal of Analytical Atomic Spectrometry. 2002. Vol. 17, No. 4. P. 406–409. DOI: 10.1039/b108787h.
21. Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J. Iolite. Freeware for the visualisation and processing of mass spectrometric data // Journal of Analytical Atomic Spectrometry. 2011. Vol. 26, No. 12. P. 2508–2518. DOI: 10.1039/c1ja10172b.
22. Longerich H.P., Jackson S.E., Günther D. Interlaboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation // Journal of Analytical Atomic Spectrometry. 1996. Vol. 11, No. 9. P. 899–904. DOI:10.1039/ja9961100899.
23. Cook N.J., Chryssoulis S.L. Concentrations of invisible gold in the common sulfides // The Canadian Mineralogist. 1990. Vol. 28, No. 1. P. 1–16.
24. Reich M., Kesler S.E., Utsunoyiya S., Palenik C.S., Chryssoulis S., Ewing R.C. Solubility of gold in arsenian pyrite // Geochimica et Cosmochimica Acta. 2005. Vol. 69, No. 11. P. 2781–2796. DOI: 10.1016/j.gca.2005.01.011.
25. Tauson V.L., Kravtsova R.G., Smagunov N.V., Spiridonov A.M., Grebenshchikova V.I., Budyak A.E. Structurally and superficially bound gold in pyrite from deposits of different genetic types // Russian Geology and Geophysics. 2014. Vol. 55, No. 2. P. 273–289. DOI: 10.1016/j.rgg.2014.01.011.
26. Large R.R., Maslennikov V.V. Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits // Minerals. 2020. Vol. 10, No. 4. P. 339. DOI: 10.3390/min10040339.
27. Pals D.W., Spry P.G., Chryssoulis S. Invisible gold and tellurium in arsenic-rich pyrite from the Emperor gold deposit, Fiji: implications for gold distribution and deposition //Economic Geology. 2003. Vol. 98. No. 3. P. 479–493. DOI: 10.2113/gsecongeo.98.3.479.
28. Gao F., Du Y., Pang Z., Du Y., Xin F., Xie J. LA-ICP-MS Trace-Element Analysis of Pyrite from the Huanxiangwa Gold Deposit, Xiong’ershan District, China: Implications for ore genesis // Minerals. 2019. Vol. 9, No. 3. P. 157. DOI: 10.3390/min9030157.
29. Deditius A.P., Reich M., Kesler S.E., Utsunomiya S., Chryssoulis S.L., Walshe J., Ewing R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits // Geochimica et Cosmochimica Acta. 2014. Vol. 140. P. 644–670. DOI: 10.1016/j.gca.2014.05.045.
30. Vaughan J.P., Kyin A. Refractory gold ores in Archaean greenstones, Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification //Mineralogical Magazine. 2004. Vol. 68, No. 2. P. 255–277. DOI: 10.1180/0026461046820186.
31. Moskvitina L.V., Moskvitin S.G., Anisimova G.S. Research of nanoscale gold by methods of tunneling and atomic-powered microscopy with chemical and ion-plasma etching in the Kuchus Deposit (Republic Sakha (Yakutia)) // IOP Conference Series: Earth and Environmental Science. 2019. Vol. 272(2). P. 022184. DOI: 10.1088/1755-1315/272/2/022184.
Рецензия
Для цитирования:
Kudrin M.V., Polufuntikova L.I., Fridovsky V.Yu., Aristov V.V., Tarasov Ya.A. Geochemistry and the form of «invisible» gold in pyrite from metasomatites of the Khangalas deposit, North-East of Russia. Природные ресурсы Арктики и Субарктики. 2020;25(3):7-14. https://doi.org/10.31242/2618-9712-2020-25-3-1