Surface treatment of reinforcing fillers with a mixture of phenylmethane and polybutadiene to increase adhesion with elastomer
https://doi.org/10.31242/2618-9712-2022-27-3-439-449
Abstract
The use of high-modulus fibers with improved technological and operational properties in production of the composite elastomers is an urgent task in Materials Science. The widespread reinforcing fillers are basalt, glass and carbon fibers, which have a high chemical inertness. Therefore, the introduction of these fillers into the elastomer requires an increase of their adhesion to the rubber matrix, which further improves the reliability and durability of the material in operation. This paper presents a method for increasing the adhesion between the adhesive and the substrate due to the surface treatment of reinforcing fabrics with a rubber mixture previously dissolved in phenylmethane (toluene). We investigated the obtained materials for elastic-strength properties, wear resistance, hardness and adhesion. We also studied the microstructure in the volume of the material, the friction surface and the place of delamination. The results of the tensile tests showed a general tendency in increasing of the tensile strength values up to 1.6 times and decreasing of the relative elongation values up to 2 times. The tests for wear resistance showed a decrease in values by 10–20 % for samples with the surface treatment of fabric with a dissolved mixture, along with an increase in their hardness values. Surface treatment of fabrics by proposed method before vulcanization increased adhesion values from 1.2 to 3 times.
Keywords
About the Authors
A. E. MarkovRussian Federation
MARKOV, Aital Eremeevich, Research Engineer, Researcher ID: ACF-8819-2022
Laboratory of Composite Materials of the Arctic Subarctic, 2 Petrovskogo st., Yakutsk 677000
M. M. Kopyrin
Russian Federation
KOPYRIN, Mikhail Mikhailovich, Junior Researcher, Researcher ID: AAI-8876-2021
Laboratory of Composite Materials of the Arctic Subarctic, 2 Petrovskogo st., Yakutsk 677000
A. A. Dyakonov
Russian Federation
DYAKONOV, Afanasy Alekseevich, Cand. Sci. (Engineering), Researcher, Researcher ID: E-5710-2014
Laboratory of Composite Materials of the Arctic Subarctic, 2 Petrovskogo st., Yakutsk 677000
Institute of Natural Science, 58 Belinsky st., Yakutsk 677000
A. G. Tuisov
Russian Federation
TUISOV, Aleksei Gennadevich, Cand. Sci. (Engineering), Senior Researcher, Researcher ID: ABA-4930-2020
Laboratory of Composite Materials of the Arctic Subarctic, 2 Petrovskogo st., Yakutsk 677000
A. A. Okhlopkova
Russian Federation
OKHLOPKOVA, Aitalina Alekseevna, Dr. Sci. (Engineering), Professor, Chief Researcher, Researcher ID: A-6594-2014
Institute of Natural Science, 58 Belinsky st., Yakutsk 677000
N. N. Lazareva
Russian Federation
LAZAREVA, Nadezhda Nikolaevna, Cand. Sci. (Engineering), Leading Researcher, Head of the Laboratory, Researcher ID: E-5063-2014
Institute of Natural Science, 58 Belinsky st., Yakutsk 677000
References
1. Sokolskaya M.K., Kolosova A.S., Vitkalova I.A., Torlova A.S., Pikalov A.S. Binders to obtain the modern polymer composite materials. Fundamentalnye issledovaniya. 2017;10(2):290–295. (In Russ.)
2. Kolosova A.S., Sokolskaya M.K., Vitkalova I.A., Torlova A.S., Pikalov A.S. Fillers to modify the modern polymer composite materials. Fundamentalnye issledovaniya. 2017;10(3):459–465. (In Russ.)
3. ITS 32-2017. Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam. Proizvodstvo polimerov, v tom chisle biorazlagaemykh. (In Russ.)
4. Kornev A.Y., Bobrov A.P., Kuzin V.S., Zvezdenkov K.A. The use of neodymium rubbers in tire treads and sidewalls. Kauchuk i rezina. 2004;6:7–10. (In Russ.)
5. Alekseev A.G. et al. The big guide of the rubber worker. Part 1. Rubbers and rubber products. Pod red. S.V. Reznichenko, Yu.L. Morozova. M.: OOO « Izdatelskiy tsentr «Tekhinform» MAI », 2012; 735 p. (In Russ.)
6. Litvinov M.Y. Analysis of the microstructure of cisbutadiene rubbers using NMR spectroscopy. Vestnik sovremennykh issledovaniy. 2018; 9.1(24):247–250. (In Russ.)
7. Ilin V.M., Rezova A.K. Butadiene rubber: capacities and corporate structure of production in the world. Kauchuk i rezina. 2015;5:46–51. (In Russ.)
8. Yakovlev B.A., Gavrilenko I.F., Bondarenko G.N., Chausova O.V Polymerization of butadiene initiated by neodymium catalysts applied on oxide supports. Vysokomolekulyarnyye soyedineniya. Seriya B. 2006;48(8): 1519–1522. (In Russ.)
9. Pankratyeva U.V., Kudyakov K.L. Experience in the use of fiberglass and glass composites for reinforcing concrete structures. Tomsk: Izbrannye doklady 65-y Yubileynoy universitetskoy nauchno-tekhnicheskoy konferentsii studentov i molodykh uchenykh. Sbornik dokladov; 2019:90–92. (In Russ.)
10. Korenets A.M., Bratoshevskaya V.V. Use of carbon fiber in modern construction. Krasnodar: Nauchnoe obespechenie agropromyshlennogo kompleksa. Sbornik statey po materialam 76-y nauchno-prakticheskoy konferentsii studentov po itogam NIR za 2020 god. Krasnodar; 2021: 99–100. (In Russ.)
11. Sopin D.M., Bogusevich G.G., Bogusevich V.A., Chen V. Reinforcement of concrete with dispersed basalt fiber. Nauka i innovatsii v stroitelstve: Sbornik dokladov IV Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Belgorod; 2020:385–389. (In Russ.)
12. Vasilyev V.V., Protasov V.D., Bolotin V.V. Composite materials: Reference. M.: Mashinostroenie. 1990; 512 p. (In Russ.)
13. Kablov Ye.N., Shchetanov B.V., Ivakhnenko Yu.A., Balinova Yu.A Perspective reinforcing high-temperature fibres for metal and ceramic composite materials. «Trudy VIAM» («Proceedings of VIAM»). 2013;(2). (In Russ.)
14. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Fiberglass for structural purposes for the aircraft industry. Trudy VIAM («Proceedings of VIAM»). 2015;(8):55–59. (In Russ.)
15. Ozkan S.Zh., Karpacheva G.P., Dzidziguri E.L., Chernavskiy P.A., Bondarenko G.N. Polymer-metal-carbon nanomaterials based on poly-3-amino-7-methylamino2-methylphenazine and magnetite nanoparticles fixed on single-walled carbon nanotubes. V Mezhdunarodnaya konferentsiya-shkola po khimicheskoy tekhnologii: sbornik tezisov dokladov satellitnoy konferentsii «KhKh Mendeleevskogo sezda po obshchey i prikladnoy khimii. Volgograd; 2016:70–73. (In Russ.)
16. Dyakonov A.A., Ammosov S.S., Tarasova P.N., Okhlopkova A.A., Sleptsova S.A., Petrova N.N., Kichkin A.K., Kichkin A.A., Tuisov A.G. Research of composite polymer materials reinforced with basalt fabric. Polzunovskiy vеstnik. 2021;(2):175–181. (In Russ.) DOI: 10.25712/ASTU.2072-8921.2021.02.024.
17. Molchanov B.I., Gudimov M.M. Properties of carbon fiber plastics and their applications. Aviation History. 1997;(3-4):58–60. (In Russ.)
18. Trostyanskaya Y.B. Reinforced plastics. Reference manual. Pod red. G.S. Golovkina, V. I. Semenova. Moscow: MAI; 1997; 268 p. (In Russ.)
19. Ibatullina A.R. Overview of manufacturers and comparison of properties of heavy-duty high-modulus fibers. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014; 17(19):136–139. (In Russ.)
20. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder vse-1212 and the filling agents alternative to ones of Porcher Ind. And Toho Tenax. Aviatsionnyye materialy i tekhnologii. 2018;3(52):18–26. (In Russ.) DOI: 10.18577/2071-9140-2018-0-3-18-26.
21. Simamura S., Sindo A., Kotsuka K. Carbon fibers. Per. s yap. Yu. M. Tovmasyana. Pod red. E. S. Zelenskogo. Moscow: Mir; 1987; 304. (In Russ.)
22. Huang X. Fabrication and Properties of Carbon Fibers. Materials. 2009; 2(4): 2369–2403. DOI:10.3390/ma2042369.
23. Newcomb B.A. Processing, structure, and properties of carbon fibers. Composites Part A: Applied Science and Manufacturing. 2016;91:262–282.
24. Dalinkevich A.A., Gumargalieva K.Z., Sukhanov A.V., Aseev A.V. COBRAE Conference «Bridge engineering with Polymer Composites». Dubendorf: EMPA; 2005.
25. Kalinchev V.A., Makarov M.S. Wound fiberglass. Moscow: Khimiya; 1986; 268. (In Russ.)
26. Aslanova M.S., Kolesov Y.I., Khazanov V.Y. Glass Fibers. Moscow: Khimiya; 1979; 597 р. (In Russ.)
27. Pashchenko A.A., Serbin V.P., Paslavskaya A.P., Glukhovskiy V.V., Biryukovich Yu.L., Solodovnik A.B. Reinforcement of inorganic binders with mineral fibers. M.: Stroyizdat; 1988; 200 р. (In Russ.)
28. Babayevskiy P.G. Structural plastics (reactoplasts). Pod red. Y. B. Trostyanskoy. Moscow: Khimiya, 1974; 303 р. (In Russ.)
29. Meleshko A.I., Polovnikov S.P. Carbon, Carbon fibers, carbon composites. M.: SAYNS-PRESS; 2007; 92 р. (In Russ.)
30. Etcheverry M., Barbosa S.E. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials. 2012;5(12): 1084–1113. DOI:10.3390/ma5061084.
31. Avtorskoe svidetelstvo № 326775 SSSR, MPK C08L 9/04, C08K 5/04, C08K 5/20. Sposob povysheniya adgezii steklovolokna k rezinam: № 1345942/23-5: zayavl. 07.07.1969 : opubl. 19.01.1972 / M. Kunio, N. Sabure, O. Satoru [et al.]. (In Russ.)]
32. Cech V., Knob A., Hosein H.A., Babik A., Lepcio P., Ondreas F., Drzal L.T. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Composites Part A: Applied Science and Manufacturing. 2014;58:84–89. DOI:10.1016/j.compositesa.2013.12.003.
33. Mukhin V.V., Petrova N.N., Kapitonov E.A., Afanasyev A.V. Development of aircraft synthetic oil resistant rubbers based on mixture of nitrile and diene rubbers. Vestnik SVFU. 2016;6(56):41–50. (In Russ.)
Review
For citations:
Markov A.E., Kopyrin M.M., Dyakonov A.A., Tuisov A.G., Okhlopkova A.A., Lazareva N.N. Surface treatment of reinforcing fillers with a mixture of phenylmethane and polybutadiene to increase adhesion with elastomer. Arctic and Subarctic Natural Resources. 2022;27(3):439-449. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-3-439-449