Preview

Arctic and Subarctic Natural Resources

Advanced search

Conditions for the formation of REE-bearing minerals in Neoproterozoic carbonaceous metamorphic rocks of the Engane-Pe Ridge, Polar Urals

https://doi.org/10.31242/2618-9712-2025-30-2-186-204

Abstract

This article presents data on rare earth element (REE) minerals, highlighting their typochemical characteristics and the specific geological conditions that promote their formation. The minerals investigated in this study originate from the metamorphic carbonaceous volcanogenic-sedimentary and sedimentary deposits found in the Manyukuyakhinskaya suite (RF 3 ), located in the Engane-Pe Ridge within the Arctic regions of the Ural Mountains. The study identifies several REE-bearing minerals across all examined rock types, including allanite-(Ce), monazite-(Ce), and xenotime-(Y). Notably, within the metapelites of the Engane-Pe Range, the rare earth fluorocarbonate synchysite-(Ce) and a rare variety of hydrated thorite with increased contents of REE, phosphorus (P), and arsenic (As) have been documented for the first time. The chemical formula for this specific variety of thorite is represented as follows: (Th0,44–0,55Y0,21–0,24Сa0,11–0,12Zr0,08–0,09Се0,040,03–0,04Nd0,03U0,05Yb0,01–0,02Gd0,01)Σ1,05–1,11(Si0,70–0,72P0,19–0,20As0,06V0,03)Σ1O4OH. Moreover, a rare-earth water-containing silicate, known as krizeyite , has been discovered in association with carbonates in volcanic-sedimentary rocks from the Engane-Pe Ridge. In addition, an aqueous silicate containing copper, lead, and iron, referred to as krizeyite, has been observed on the surface of chalcopyrite. The investigation of typomorphic and crystallochemical characteristics has enabled the development of a schematic representation illustrating the evolutionary processes that influence the compositions of REE-bearing minerals within the studied formations. The primary minerals that concentrate REE and thorium (Th) in the sedimentary and volcanogenic-sedimentary carbonaceous rocks of the Manyukuyakhinskaya suite include zircon, apatite, allanite-(Ce), monazite-(Ce), and xenotime-(Y). Hydrothermal-metamorphic transformations of the rocks resulted in the redeposition of REE, leading to the formation of distinct mineral forms such as thorite, synchysite-(Ce), and kainosite-(Y), along with hydrothermally modified grains and rims of monazite-(Ce) and xenotime-(Y).

About the Authors

O. V. Grakova
Institute of Geology of Komi Science Centre of the Ural Branch, Russian Academy of Sciences
Russian Federation

GRAKOVA, Oksana Vasilʼevna, Cand. Sci. (Geol. and Mineral.), Researcher

ResearcherID: K-8365-2018, Scopus Author ID: 57192210915

Syktyvkar



K. S. Popvasev
Institute of Geology of Komi Science Centre of the Ural Branch, Russian Academy of Sciences
Russian Federation

POPVASEV, Konstantin Stepanovich, Junior Researcher

ResearcherID: HKV-8452-2023, Scopus Author ID: 58064830100

Syktyvkar



References

1. Matveev A.I., Tolstov A.V., Petrov I.M. The proposal for developing a rare metal cluster in the Republic of Sakha (Yakutia). Arctic and Subarctic Natural Resources. 2025;30(1):7–27. (In Russ.) https://doi.org/10.31242/2618-9712-2025-30-1-7-27.

2. Kovalev S.G., Maslov A.V., Kovalev S.S. Mineralogical and geochemical aspects of rare earth-elements behavior during metamorphism (on the example of Upper Precambrian structural-material complexes of the Bashkir megaanticlinorium, Southern Urals). Georesources. 2020;22(2):56–66. (In Russ.) https://doi.org/10.18599/grs.2020.2.56-66.

3. Kovalev S.G., Kovalev S.S., Sharipova A.A. First data on rare earth mineralization in acid rock varieties of the Shatak complex (Southern Urals). Lithosphere (Russia). 2023;23(5):910–929. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-5-910-929.

4. Yudovich Ya.E., Efanova L.I., Shvetsova I.V. et al. Zone of interformation contact in the lake’s Grubependites crust. Syktyvkar: Geoprint; 1998. 97 p. (In Russ.)

5. Kozyreva I.V., Shvetsova I.V., Popova T.N. Find of Nd-talenite in the Subpolar Urals. Vestnik Instituta geologii Komi NTs UrO RAN. 2004;114(6):2–3. (In Russ.)

6. Kovalchuk N.S. Rare-earth mineralization in metamorphic schists of the Puivinskaya suite (RF2), Subpolar Urals. Vestnik IG Komi SC UB RAS. 2015;250(10):38–44. (In Russ.)

7. Udoratina O.V., Kapitanova V.A. Geochronology of the rocks of substrate and ores of rare metal – rare earth deposits and ore occurrences in the north of the Urals and Timan. Proceedings of the Komi Science Centre Ural Branch of the Russian Academy of Sciences. 2016;28(4):85–100. (In Russ.)

8. Onishchenko S.A., Kuznetsov S.K. Palladium-goldsulfide mineralization in andesites at Chudnoye deposit (Subpolar Urals). Vestnik IG Komi SC UB RAS. 2019;6:20–27. (In Russ.) https://doi.org/10.19110/2221-1381-2019-6-20-27

9. Grakova O.V., Popvasev K.S. Rare-earth minerals in pre-Cambrian rocks of the Lyapinskii anticlinorium (Subpolar Urals). Lithosphere (Russia). 2024;24(4):661–674. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-4-661-674.

10. Grakova O.V., Ulyasheva N. S. Metallogeny of features of carbonaceous shales of the Nyarovei series (Polar Urals). Vestnik IG Komi SC UB RAS. 2016;9-10:16–21. (In Russ.) https://doi.org/10.19110/2221-1381-2016-10-16-21

11. Grakova O.V., Popvasev K.S., Ulyasheva N.S. Typochemistry and possible sources of ferrosaponite with Ce–Cu–Ni from the metabasalts of the Northern Ural. Arctic and Subarctic Natural Resources. 2024;29(3):372–383. (In Russ.) https://doi.org/10.31242/2618-9712-2024-29-3-372-383.

12. Vovchina T.A., Shuysky A.S. Rare earth mineralization in rhyolites of the Lyadgei complex of the Enganepe ridge, Polar Urals. In: Structure, substance, history of the lithosphere of the Timan-Severouralsk segment: Proceedings of the 32 nd scientific conference, Syktyvkar, November 21–22, 2023. Syktyvkar: IG Komi Scientific Center Ural Branch RAS, pp. 16-19. (In Russ.)

13. Bulakh A.G., Zolotarev A.A., Krivovichev V.G. Structure, isomorphism, formulas, classification of minerals. St. Petersburg: St. Petersburg State University Publishing House; 2014. 133 p. (In Russ.)

14. Krivovichev V.G., Gulbin Yu.L. Recommendations for the calculation and presentation of mineral formulas based on chemical analysis data. Proceedings of the Russian Mineralogical Society. 2022;151(1):114–124. (In Russ.) https://doi.org/10.31857/S0869605522010087.

15. State Geological Map of the Russian Federation, scale 1:200,000. Second edition. Polar-Ural Series. Sheet Q-41-XI (Eletsky). Explanatory note. Ed. M. A. Shishkin. Moscow: MF VSEGEI; 2013. 217 p. (In Russ.)

16. Ginzburg A.I., Zhuravleva L.N., Ivanov I.B., et al. Geology of rare element deposits. Issue 3. Rare earth elements and their deposits. Moscow: State Scientific and Technical Publishing House of Literature on Geology and Subsoil Conservation; 1959. 126 p. (In Russ.)

17. Mineral database Mindat.org Access mode: https://www.mindat.org/min-35958.html (accessed: 24.02.2025)

18. Popova V.I., Popov V.A., Makagonov E.P., et al. Vishnevye Gory. Volume 25, Issue 3. Moscow: Mineralogical Almanac; 2021. 128 p. (In Russ.)

19. Kovalev S.G., Kovalev A.A., Sharipova A.A. Rareearth mineralization in terrigenous deposits of the Shatak complex (Southern Urals): species diversity and features of chemical composition. Litologiya i poleznyye iskopayemyye. 2024;1:19–33. (In Russ.) https://doi.org/10.31857/S0024497X24010027

20. Soroka E.I., Pritchin M.E., Leonova L.V., Bulatov V.A. Rare earth fluorocarbonates in rocks of the Safyanovsky copper-zinc-pyrite deposit (Middle Urals). Doklady Rossijskoj akademii nauk. Nauki o Zemle. 2023;508(1):50–57. (In Russ.) https://doi.org/10.31857/S2686739722600552.

21. Yukhtanov P.P., Burlakov E.V. Ankyllitis and synchisitis from crystal-bearing nests of the Subpolar Urals. Trudy Instituta geol., Komi filial AN SSSR. 1985;50(14):99–104. (In Russ.)

22. Littlejohn A.L. Alteration products of accessory allanite in radioactive granites from the Canadian shield. Geological Survey of Canada.1981;81:95–104.

23. Lira R., Ripley E. Fluid inclusion studies of the Rodeo de Los Molles REE and Th deposit, Las Chacras Batholith, Central Argentina. Geochimica et Cosmochimica Acta. 1990;54(3):663–671. https://doi.org/10.1016/0016-7037(90)90362-О

24. Gieré R., Sorenses S.S. Allanite and ther REE-Rich Epidote-Group Minerals. Reviews in Mineralogy and Geochemistry. 2004;56(1):431–493. https://doi.org/10.2138/gsrmg.56.1.431

25. Alles J., Ploch A-M., Schirmer T., Nolte N., et al. Rare-earth-element enrichment in post-Variscan polymetallic vein systems of the Harz Mountains, Germany. Mineralium Deposita. 2019;54(2):307–328. https://doi.org/10.1007/s00126-018-0847-8

26. Williams S.A., Bideaux R.A. Creaseyite, Cu2Pb2(Fe,Al)2Si5O17-6H2O a new mineral from Arizona and Sonora. Mineralogical Magazine. 1975;40(311):227–231. https://doi.org/10.1180/minmag.1975.040.311.02

27. Malcherek T., Köslin B., Schlüter J. The crystal structure of creaseyite: a disordered, nanoporous lead iron copper alumosilicate. Zeitschrift für Kristallographie - Crystalline Materials. 2013;228(3):134–139. https://doi.org/10.1524/zkri.2013.1572


Review

For citations:


Grakova O.V., Popvasev K.S. Conditions for the formation of REE-bearing minerals in Neoproterozoic carbonaceous metamorphic rocks of the Engane-Pe Ridge, Polar Urals. Arctic and Subarctic Natural Resources. 2025;30(2):186-204. (In Russ.) https://doi.org/10.31242/2618-9712-2025-30-2-186-204

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)