Polymer materials based on ultra-high molecular weight polyethylene: structure and properties
https://doi.org/10.31242/2618-9712-2022-27-4-631-642
Abstract
This paper presents the results of a study of the properties and structure of ultra-high molecular weight polyethylene (UHMWPE) depending on grades and molecular weight. We compared the grades of UHMWPE 510 and 517 synthesized in the Federal Research Center Boreskov Institute of Catalysis, and GUR grades 4022, 4130 and 4150 from Celanese (Germany and China). Powders were processed according to the technology of hot pressing in a vulcanizing press in accordance with GOST 16337-77 to obtain samples for research. The structure of the polymers was studied by X-ray diffraction analysis and scanning electron microscopy. The study of powder morphology indicates that UHMWPE powders consist of clusters of smaller subparticles interconnected by polymer fibrils. At the same time, the supramolecular structure of UHMWPE is characterized by the formation of spherulites, the size of which decreases with increasing molecular weight. X-ray patterns of UHMWPE show that with increasing molecular weight, a more defective structure is formed. This phenomenon is confirmed by the method of differential scanning calorimetry, a decrease in the values of the enthalpy of melting and the degree of crystallinity with increasing molecular weight was revealed. We established that the value of the degree of crystallinity and density of Russian-made brand 517 is comparable to foreign brands. In terms of physical, mechanical and tribological parameters, this brand is not inferior to foreign analogues, since it has a high tensile strength, which reaches up to 45 MPa, and a low mass wear rate of 0.07 mg/h.
About the Authors
S. N. DanilovaRussian Federation
DANILOVA, Sakhayana Nikolaevna, Junior Researcher, AuthorID: 933163, Researcher ID: AAZ-5494-2021
58 Belinsky st., Yakutsk 677000
A. V. Okoneshnikova
Russian Federation
OKONESHNIKOVA, Anastasia Vasilievna, 3rd year student
58 Belinsky st., Yakutsk 677000
A. A. Okhlopkova
Russian Federation
OKHLOPKOVA, Aitalina Alexeevna, Dr. Sci. (Engineering), Professor, Chief Researcher, AuthorID: 57856, Researcher ID: A-6594-2014
58 Belinsky st., Yakutsk 677000
References
1. Kurdi A., Chang L. Recent advances in high performance polymers-tribological aspects. Lubricants. 2018; 7(1): 2. DOI: 10.3390/lubricants7010002.
2. Sklifos V.O., Ryzhko A.A., Shcheglov D.P. Nanoparticles for polymer composite materials in construction. Science Prospects. 2021;5:123–125. (In Russ.)
3. Sherstyukov B.G. The climatic conditions of the Arctic and new approaches to the forecast of the climate change. Arktika i Sever [Arctic and North]. 2016;24:39–67. (In Russ.)
4. Selyutin G.E., Gavrilov Y.U., Voskresenskaya E.N., Zakharov V.A., Nikitin V.E., Poluboyarov V.A. Composite materials based on ultra-high molecular polyethylene: properties, application prospects. Chemistry for sustainable development. 2010;18(3):301–314.
5. Abdul Samad M. Recent Advances in UHMWPE/UHMWPE nanocomposite/UHMWPE hybrid nanocomposite polymer coatings for tribological applications: a comprehensive review. Polymers. 2021;13(4): 608. https://doi.org/10.3390/polym13040608.
6. Chen X., Wang X., Feng Y., Qu J., Yu D., Cao C., Chen X. Enhancing chain mobility of ultrahigh molecular weight polyethylene by regulating residence time under a consecutive elongational flow for improved processability. Polymers. 2021;13(13):2192. DOI: 10.3390/polym13132192.
7. Andreeva I.N., Veselovskaya E.V., Nalivajko E.I., Pechenkin A.D., Buhgalter V.I., Polyakov A.V. Ultra high molecular weight polyethylene of high density. L.: Chemistry; 1982. 80 p. (In Russ.)
8. Galibeev S.S., Hajrullin R.Z., Arhireev V.P. Ultrahigh molecular weight polyethylene. Trends and prospects. Bulletin of the Kazan Technological University. 2008;2:50–55. (In Russ.)
9. Peacock A.J. Handbook of polyethylene: structures: properties, and applications. CRCpress; 2000. 544 p.
10. Okhlopkova A.A., Okhlopkova T.A., Borisova R.V. Controlling structure formation processes in polymer composite materials based on UHMWPE. Nauka i Obrazovanie. 2015;2(78):85–90. (In Russ.)
11. Kossack W., Seidlitz A., Thurn-Albrecht T., Kremer F. Molecular order in cold drawn, strain-recrystallized poly(ε-caprolactone). Macromolecules. 2017;50(3): 1056–1065. https://doi.org/10.1021/acs.macromol.6b02714.
12. Hu X.P., Hsieh Y.L. Crystallite sizes and lattice distortions of gel-spun ultra-high molecular weight polyethylene fibers. Polymer journal. 1998; 30(10): 771–774. DOI: 10.1295/polymj.30.771.
13. Joo Y.L., Han O.H., Lee H.K., Song J.K. Characterization of ultra high molecular weight polyethyelene nascent reactor powders by X-ray diffraction and solid state NMR. Polymer. 2000;41(4):1355–1368. https://doi.org/10.1016/S0032-3861(99)00272-4.
14. Zamfirova G., Perena J.M., Benavente R., Pé- rez E., Cerrada M.L., Nedkov E. Mechanical properties of ultra-high molecular weight polyethylene obtained with different cocatalyst systems. Polymer journal. 2002; 34(3):125–131. https://doi.org/10.1295/polymj.34.125.
15. Fedorov L.Yu., Karpov I.V., Ushakov A.V., Lepeshev A.A., Ivanenko A.A. Structural state of ultrahigh molecular weight polyethylene during one-stage deposition of nanoparticles from arc discharge plasma. Technical physics letters. 2017;43(21):24–32. https://doi.org/10.21883/PJTF.2017.21.45158.16747. (In Russ.)
16. Aulov V.A., Kuchkina I.O. Manifestation of the monoclinic phase in IR-spectra of ultrahigh-molecularweight polyethylene. Polymer Science, Series A. 2009; 51(8):877–880. (In Russ.)
17. Bracco P., Bellare A., Bistolfi A., Affatato S. Ultrahigh molecular weight polyethylene: influence of the chemical, physical and mechanical properties on the wear behavior. A review. Materials. 2017;10(7):791. https://doi.org/10.3390/ma10070791.
18. Ney Z.L. Technological and operational properties of nanomodified polyethylene: Dis.… Cand. Sci.: Moscow: 2017. 163 p. (In Russ.)
19. Galitsyn V., Gribanov S., Kakiage M., Uehara H., Khizhnyak S., Pakhomov P., Moeller E., Nikitin V., Zakharov V., Tshmel A. Straight-chain segment length distributions in UHMWPE reactor powders of different morphological types. International Journal of Polymer Analysis and Characterization. 2007; 12(3):221–230. https://doi.org/10.1080/10236660701245264.
20. Vadivel H.S., Bek M., Šebenik U., Perše L.S., Kádár R., Emami N., Kalin M. Do the particle size, molecular weight, and processing of UHMWPE affect its thermomechanical and tribological performance? Journal of Materials Research and Technology. 2021;12:1728–1737. https://doi.org/10.1016/j.jmrt.2021.03.087.
21. Lebedev D.V., Ivan’kova E.M., Marikhin V.A., Myasnikova L.P., Seydewitz V. Surface structure of nascent particles of ultrahigh molecular weight poly(ethylene) reactor powders. Physics of the Solid State. 2009;51(8): 1645. (In Russ.)
22. Khalil Y., Hopkinson N., Kowalski A., Fairclough J.P.A. Characterisation of UHMWPE polymer powder for laser sintering. Materials. 2019;12(21):3496. https://doi.org/10.3390/ma12213496.
23. Michler G.H., Seydewitz V., Buschnakowski M., Myasnikowa L.P., Ivan’Kova E.M., Marikhin V.A., Boiko Y.M., Goerlitz S. Correlation among powder morphology, compactability, and mechanical properties of consolidated nascent UHMWPE. Journal of applied polymer science. 2010;118(2):866–875. https://doi.org/10.1002/app.32346.
24. Rimell J.T., Marquis P.M. Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications. Journal of Biomedical Materials Research. 2000;53(4):414–420. https://doi.org/10.1002/1097-4636(2000)53:4<414::AID-JBM16>3.0.CO;2-M.
25. Okhlopkova T.A., Borisova R.V., Okhlopkova A.A., Dyakonov A.A., Vasiliev A.P., Mironova S.N. Microscopic investigations of spherulitic structures tensile strain in polymeric composite materials. Vestnik NEFU. 2015; 3(47):75–87. (In Russ.)
26. Galitsyn V.P. Physical and chemical properties and structure of reactor powders, gels and oriented fibers made of ultrahigh molecular weight polyethylene: Dis.… Dr Sci. Tver: 2012. 339 p. (In Russ.)
27. Liu Y.X., Chen E.Q. Polymer crystallization of ultrathin films on solid substrates. Coordination Chemistry Reviews. 2010;254(9-10):1011–1037. https://doi.org/10.1016/j.ccr.2010.02.017.
28. Dingler C., Dirnberger K., Ludwigs S. Semiconducting polymer spherulites-From fundamentals to polymer electronics. Macromolecular Rapid Communications. 2019; 40(1): 1800601. https://doi.org/10.1002/marc.201800601.
29. Cook J.T.E., Klein P.G., Ward I.M., Brain A.A., Farrar D.F., Rose J. The morphology of nascent and moulded ultra-high molecular weight polyethylene. Insights from solid-state NMR, nitric acid etching, GPC and DSC. Polymer. 2000;41(24):8615–8623. https://doi.org/10.1016/S0032-3861(00)00254-8.
30. Zhornik V.I., Kovaliova S.A., Grigoryeva T.F., Kiseleva T.Yu., Belotserkovsky M.A., Taran I.I., Valkovich I.V., Vityaz P.A., Lyakhov N.Z. Formation of structure of highly filled UHMWPE composites under conditions of intensive mechanical activation for radiation protective materials. Mechanics of machines, mechanisms and materials. 2019;4:70–78. (In Russ.)
31. Bergström J.S., Kurtz S.M., Rimnac C.M., Edidin A.A. Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials. 2002;23(11):2329–2343. https://doi.org/10.1016/S0142-9612(01)00367-2.
32. Sobieraj M.C., Rimnac C.M. Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. Journal of the mechanical behavior of biomedical materials. 2009;2(5):433–443. https://doi.org/10.1016/j.jmbbm.2008.12.006.
33. Galeski A., Bartczak Z., Vozniak A., Pawlak A., Walkenhorst R. Morphology and plastic yielding of ultrahigh molecular weight polyethylene. Macromolecules. 2020;53(14):6063-6077. https://doi.org/10.1021/acs.macromol.9b02154.
34. Danilova S.N., Yarusova S.B., Kulchin Y.N., Zhevtun I.G., Buravlev I.Y., Okhlopkova A.A., Gordienko P.S., Subbotin E.P. UHMWPE/CaSiO3 nanocomposite: mechanical and tribological properties. Polymers. 2021;13(4):570. https://doi.org/10.3390/polym13040570.
35. Way J.L., Atkinson J.R., Nutting J. The effect ofspherulite size on the fracture morphology of polypropylene. Journal of Materials Science. 1974;9(2):293–299. https://doi.org/10.1007/BF00550954.
Review
For citations:
Danilova S.N., Okoneshnikova A.V., Okhlopkova A.A. Polymer materials based on ultra-high molecular weight polyethylene: structure and properties. Arctic and Subarctic Natural Resources. 2022;27(4):631-642. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-4-631-642