The prospects for the rational use of biologically active substances from Pinus sylvestris needles in the creation of biopreparations
https://doi.org/10.31242/2618-9712-2022-27-4-610-617
Abstract
In this article we present the research results of a year-round accumulation dynamics of the metabolites in the needles of Scots pine (Pinus sylvestris L.) growing in Central Yakutia. Pine needles contain valuable bioactive substances effective for preventing and curing metabolic disorders in diabetes mellitus type 2 and the formation of other metabolic disorders associated with hypercholesterolemia. They also contain substances with cryoprotective properties. The highest content of antioxidants in the Pinus sylvestris L. (gallic acid, benzoic acid, aminobutyric acid) were observed in autumn. Moreover, the content of polyols, amino acids and carbohydrates increased in them during this period. Thus, we suppose it is rational to the use P. sylvestris needles gathered in autumn to produce biopreparations for normalizing carbohydrate metabolism or protecting skin from the effects of low temperatures.
About the Authors
V. V. MikhailovRussian Federation
MIKHAILOV, Vladislav Vasilevich, Research Engineer, Author ID: 57290621700, Researcher ID: AAC-2800-2022
41 Lenin pr., Yakutsk 677980
I. V. Sleptsov
Russian Federation
SLEPTSOV, Igor Vitalevich, Senior Researcher, Cand. Sci. (Biology), Author ID: 57200540770, Researcher ID: J-7736-2018
41 Lenin pr., Yakutsk 677980
S. M. Rozhina
Russian Federation
ROZHINA, Sakhayana Mikhaylovna, Junior Researcher, Author ID: 57208332809, Researcher ID: AAO-3383-2020
41 Lenin pr., Yakutsk 677980
B. M. Kershengolts
Russian Federation
KERSHENGOLTS, Boris Moiseevich, Chief Researcher, Dr. Sci. (Biology), Professor, Author ID: 55604639100
41 Lenin pr., Yakutsk 677980
References
1. Schultz D., Campeau L.-C. Harder, better, faster. Nat. Chem. 2020; 12(8):661–664. https://doi.org/10.1038/s41557-020-0510-8
2. Hughes R.C. Pricing Medicine Fairly. Philosophy of Management. 2020;19(4):369–385. https://doi.org/10.1007/s40926-020-00135-z
3. Khlebnyy E.S., Kerschengoltz B.M. Structural and functional variety of physiologically active agents – A molecular basis of high adaptive potential and a specific variety of a biota in the Arctic, prospects for biopharmaceutics. J. Ecosys. Ecograph. 2013;03(04):50. https://doi.org/10.4172/2157-7625.S1.012
4. Gromek K., Drumond N., Simas P. Pharmacovigilance of herbal medicines. JRS.2015;27(2):55–65. https://doi.org/10.3233/JRS-150643
5. Rowin J., Lewis S.L. Spontaneous bilateral subdural hematomas associated with chronic Ginkgo biloba ingestion. Neurology. 1996;46(6):1775–1776. https://doi.org/10.1212/WNL.46.6.1775
6. Guo X., Mei N. Aloe vera: A review of toxicity and adverse clinical effects. Journal of Environmental Science and Health, Part C. 2016;34(2):77–96. https://doi.org/10.1080/10590501.2016.1166826
7. Kaur S., Das M. Functional foods: An overview. Food Science and Biotechnology. Springer, 2011:20(4): 861–875. https://doi.org/10.1007/s10068-011-0121-7
8. Kato-Noguchi H., Fushimi Y., Shigemori H. An allelopathic substance in red pine needles (Pinus densiflora). Journal of Plant Physiology. 2009;166(4): 442–446. https://doi.org/10.1016/j.jplph.2008.06.012
9. Farjon A. World checklist and bibliography of conifers. Royal Botanic Gardens, 2001. 309 p.
10. Dziedziński M., Kobus-Cisowska J., Stachowiak B. Pinus species as prospective reserves of bioactive compounds with potential use in functional food – Current state of knowledge. Plants. 2021;10(7):1306. https://doi.org/10.3390/plants10071306
11. Durrant T.H., De Rigo D., Caudullo G. Pinus sylvestris in Europe: distribution, habitat, usage and threats. European atlas of forest tree species. Publ. Off. EU Luxembourg, 2016:132–133.
12. Nikolaev A.N., Fedorov P.P., Desyatkin A.R. Effect of hydrothermal conditions of permafrost soil on radial growth of larch and pine in Central Yakutia. Contemp. Probl. Ecol. 2011:4(2):140–149. https://doi.org/10.1134/S1995425511020044
13. Sudachkova N. Ye. et al. Physiology of the common pine. Novosibirsk: Nauka; 1990. 244p. (In Russ.)
14. Egorov A.D. Vitamin C and carotene in the vegetation of Yakutia. M.: Izd-vo AN SSSR; 1954. 246 p. (In Russ.)
15. Hoai N. et al. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Phcog Mag. 2015;11(44):290. https://doi.org/10.4103/0973-1296.166052
16. Nikonova N.N. et al. “Green technology” processing of pine (Pinus sylvestris L.) and larch (Larix sibirica Ledeb.) wood greenery to produce bioactive extracts. Holzforschung. 2022;76(3):276–284. https://doi.org/10.1515/hf-2021-0122
17. Strizincova P., Jablonsky M., Lelovsky M. Bioactive compounds of softwood bark as potential agents against human diseases include the SARS-CoV-2 virus. Biointerface Res. Appl. Chem. 2021;12(5):5860–5869. https://doi.org/10.33263/BRIAC125.58605869
18. Bibik I.V., Glineva Yu.A. Prospects of using pine needles extract in the production of functional drinks. Food processing: techniques and technology. 2012;1(24): 9–13. (In Russ.)
19. Zhuravleva L.N., Devyatlovskaya A.N., Rubchevskaya L.P. The woody greens of scots pine as a promising source for biologically active substances. Bulliten KrasSAU. 2008;(3):166–169. (In Russ.)
20. Слепцов И.В., Рожина С.М. Эколого-географические особенности накопления метаболитов в хвое Larix cajanderi на территории Якутии. Химия растительного сырья. 2021;(2):275–280. https://doi.org/10.14258/jcprm.2021028322
21. Konoreva L. et al. Metabolite profiling of the Cladonia lichens using gas chromatography-mass spectrometry. Biochemical Systematics and Ecology. 2019;85: 3–12. https://doi.org/10.1016/j.bse.2019.04.004
22. Gao Y. et al. Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in Type 2 diabetes mellitus rats. J. Agric. Food Chem. 2015;63(26): 6019–6026. https://doi.org/10.1021/acs.jafc.5b01238
23. Lee E. et al. Pinitol consumption improves liver health status by reducing oxidative stress and fatty acid accumulation in subjects with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. The Journal of Nutritional Biochemistry. 2019; 68:33–41. https://doi.org/10.1016/j.jnutbio.2019.03.006
24. Zheng K. et al. Protective effect of pinitol against inflammatory mediators of rheumatoid arthritis via inhibition of protein tyrosine phosphatase non-receptor Type 22 (PTPN22). Med. Sci. Monit. 2017;23:1923–1932. https://doi.org/10.12659/MSM.903357
25. Lin T.-H. et al. D-pinitol inhibits prostate cancer metastasis through inhibition of αVβ3 integrin by modulating FAK, c-Src and NF-κB pathways. IJMS. 2013; 14(5):9790–9802. https://doi.org/10.3390/ijms14059790
26. Kim J.-I. et al. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. Eur. J. Clin. Nutr. 2005; 59(3):456–458. https://doi.org/10.1038/sj.ejcn.1602081
27. Pintaudi B., Di Vieste G., Bonomo M. The effectiveness of myo-inositol and D-chiro-inositol treatment in Type 2 diabetes. International Journal of Endocrinology. 2016;2016:1–5. https://doi.org/10.1155/2016/9132052
28. Jariwalla R.J. Inositol hexaphosphate (IP6) as an anti-neoplastic and lipid-lowering agent. Anticancer Res. 1999;19(5A):3699–3702.
29. Xu Y. et al. Gallic Acid and Diabetes Mellitus: Its association with oxidative stress. Molecules. 2021.26(23): 7115. https://doi.org/10.3390/molecules26237115
30. Aglan H.A. et al. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumour Biol. 2017;39(6):101042831769912. https://doi.org/10.1177/1010428317699127
31. Orthen B., Popp M. Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environmental and Experimental Botany. 2000;44(2):125–132. https://doi.org/10.1016/S0098-8472(00)00061-7
32. Fischer C., Höll W. Food reserves of Scots pine (Pinus sylvestris L.).Trees. 1991;5(4):187–195.
33. Alekseev R.Z., Tomsk M.I., Golderova A.S., Potapov A.F., Alekseev Y.R., Semenova S.V. Preventing the development of necrosis in the frostbite with tissue glaciation. International journal of applied and fundamental research. 2015;8(1):35-41. (In Russ.)]
34. Gupta A., Soni R., Ganguli M. Frostbite – manifestation and mitigation. Burns Open. 2021;5(3):96–103. https://doi.org/10.1016/j.burnso.2021.04.002
35. Lehmuskallio E. Emollients in the prevention of frostbite. International Journal of Circumpolar Health. 2000.59(2):122–130.
36. Heisig M. et al. Frostbite Protection in mice expressing an antifreeze glycoprotein. PLoS ONE / ed. Bergmann A. 2015;10(2):e0116562. https://doi.org/10.1371/journal.pone.0116562
37. Sun M.-L. et al. Promotion of wound healing and prevention of frostbite injury in rat skin by exopolysaccharide from the arctic marine bacterium Polaribacter sp. SM1127. Marine Drugs. 2020;18(1):48. https://doi.org/10.3390/md18010048
38. Patent 2678188 C1 Russian Federation, IPC A61K 9/10, A61K 35/64, A61K 31/045. Product for protecting skin from cold damage / Li N.G., Osakovsky V.L., Osakovsky A.V. Applicant LLC «Cryoproject», application 31.08.2018; publ. 24.01.2019.
39. Vinokurov M., Tikhonov D. Is the increase in the incidence of Type 2 diabetes in Yakutia due to a decrease in cold exposure or dietary changes? Siberian Research. 2022;7(1):33–37. https://doi.org/10.33384/26587270.2022.07.01.06e
Review
For citations:
Mikhailov V.V., Sleptsov I.V., Rozhina S.M., Kershengolts B.M. The prospects for the rational use of biologically active substances from Pinus sylvestris needles in the creation of biopreparations. Arctic and Subarctic Natural Resources. 2022;27(4):610-617. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-4-610-617