Preview

Arctic and Subarctic Natural Resources

Advanced search

Fast Joule heating of carbon films formed by methane plasma deposition

https://doi.org/10.31242/2618-9712-2025-30-1-162-170

Abstract

The practical application of carbon nanomaterials drives the search for new methods of efficient synthesis. One promising approach is the production of graphene-like materials through fast (flash) Joule heating (or Ohmic heating) of a carbon-containing precursor. In this study, we investigated the effects of flash Joule heating on amorphous carbon films formed by deposition in methane plasma on Si/SiO2 substrates. Joule heating was conducted via electric discharge through samples from a capacitor block with a total capacitance of 180 mF, charged to voltages ranging from 100 to 300 V. We used various methods, including Raman spectroscopy, scanning electron microscopy, X-ray energydispersive spectroscopy, and current-voltage characteristics. The findings revealed that the most ordered structure is the carbon film subjected to fast Joule heating at a discharge voltage of 160 V. Furthermore, flash heating significantly enhances both the electrical conductivity and hydrophobicity of the material. The highest values were observed for carbon films after the discharge of a capacitor bank charged to 160 V. These results can be attributed to the transition of the initial amorphous carbon film to a crystalline structure characterized by a predominance of sp²-hybridized bonds, which exhibit low electrical resistance. The emergence of water-repellent properties can be explained by the “lotus effect, the formation of spherical particles up to 1 μm in size and their larger conglomerates on the film surface. These findings can be used to synthesize graphene-like nanomaterials with high hydrophobicity and electrical conductivity from amorphous carbon. Such materials are particularly relevant for the development of designs for all-weather unmanned aerial vehicles.

About the Authors

E. P. Neustroev
Ammosov North-Eastern Federal University
Russian Federation

Neustroev Efim Petrovich, Cand. Sci. (Phys. and Math.), Associate Professor, Institute of Physics and Technologies

ResearcherID: A-3860-2014

Scopus Author ID: 6603429455

 

Yakutsk



A. R. Prokopev
Ammosov North-Eastern Federal University
Russian Federation

Prokopev Aisen Ruslanovich, Cand. Sci. (Eng.), Senior Researcher, Laboratory “Design Center of Electronics “Sever”, Institute of Physics and Technologies

ResearcherID: AFG-0633-2022

Scopus Author ID: 57200722270

Yakutsk



References

1. Putilina P.M., Kutsevich K.E., Isaev A.Yu. Carbon fiber-reinforced and glass fiber-reinforced polymer composites for the manufacture of components for unmanned aerial vehicles and their developing prospects. Trudy VIAM. 2023;126(8):85–99. (In Russ.)

2. ElFaham M.M., Mostafa A.M., Nasr G.M. Unmanned aerial vehicle (UAV) manufacturing materials: Synthesis, spectroscopic characterization and dynamic mechanical analysis (DMA). Journal of Molecular Structure. 2020;1201:127211. https://doi.org/10.1016/j.molstruc.2019.127211

3. Lyu M.Y., Choi T.G. Research trends in polymer materialsfor use in lightweight vehicles. International Journal of Precision Engineering and Manufacturing. 2015; 16:213–220. https://doi.org/10.1007/s12541-015-0029-x

4. Zhang J., Lin G., Vaidya U., Wang H. Past, present and future prospective of global carbon fibre composite developments and applications Composites Part B: Engineering. 2023;250:110463. https://doi.org/10.1016/j.compositesb.2022.110463

5. Agarwal N., Rangamani A., Bhavsar K., et al. An overview of carbon-carbon composite materials and their applications. Frontiers in Materials. 2024;11: 1374034. https://doi.org/10.3389/fmats.2024.1374034

6. Mishnaevsky Jr.L., Branner K., Petersen H.N., et al. Materials for wind turbine blades: An overview. Materials. 2017;10(11):1285. https://doi.org/10.3390/ma10111285

7. Li J., Yin D., Qin Y. Carbon materials: structures, properties, synthesis and applications. Manufacturing Review. 2023;10:13. https://doi.org/10.1051/mfreview/2023011

8. Meunier V., Souza Filho A.G., Barros E.B., Dresselhaus M.S. Physical properties of low-dimensional sp 2-based carbon nanostructures Reviews of Modern Physics. 2016;88(2):025005. https://doi.org/10.1103/RevModPhys.88.025005

9. Titirici M.M., White R.J., Brun N., et al. Sustainable carbon materials. Chemical Society Reviews.2015;44(1): 250–290. https://doi.org/10.1039/C4CS00232F

10. Drozdov M.N., Drozdov Y.N., Okhapkin A.I., et al. Sims analysis of carbon-containing materials: content of carbon atoms in sp 2 and sp 3 hybridization states. Technical Physics Letters. 2020;46(3):290–294. https://doi.org/10.1134/S1063785020030190

11. Papageorgiou D.G., Kinloch I.A., Young R.J. Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science. 2017;90: 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

12. Hina M., Kamran K., Bashir S., et al. Extra ordinary properties of graphene. In: Subramaniam R.T., Kasi R., Bashir S., Kumar S.S.A. (eds) Graphene. Engineering Materials. Singapore; Springer; 2023, pp. 21–52. https://doi.org/10.1007/978-981-99-1206-3

13. Kumar A., Sharma K., Dixit A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science. 2019;54(8):5992– 6026. https://doi.org/10.1007/s10853-018-03244-3

14. Ji X., Xu Y., Zhang W., et al. Review of functionalization, structure and properties of graphene/polymer composite fibers. Composites Part A: Applied Science and Manufacturing. 2016;87:29–45. https://doi.org/10.1016/j.compositesa.2016.04.011

15. Luong D.X., Bets K.V., Algozeeb W.A., et al. Gram-scale bottom-up flash graphene synthesis. Nature. 2020;577(7792):647–651. https://doi.org/10.1038/s41586-020-1938-0

16. Sun Z., Hu Y.H. Ultrafast, low‐cost, and mass production of high‐quality graphene. Angewandte Chemie International Edition. 2020;59(24):9232–9234. https://doi.org/10.1002/anie.202002256

17. Algozeeb W.A., Savas P.E., Luong D.X., et al. Flash graphene from plastic waste. ACS nano. 2020;14(11): 15595–15604. https://pubs.acs.org/doi/abs/10.1021/acsnano. 0c06328

18. Deng B., Eddy L., Wyss K.M., et al. Flash Joule heating for synthesis, upcycling and remediation. Nature Reviews Clean Technology. 2025;1:32–54. https://doi.org/10.1038/s44359-024-00002-4.

19. Kokmat P., Surinlert P., Ruammaitree A. Growth of high-purity and high-quality turbostratic graphene with different interlayerspacings. ACS Omega. 2023(8):4010– 4018. https://doi.org/10.1021/acsomega.2c06834

20. Wyss K.M., Luong D.X., Tour J.M. Large‐scale syntheses of 2D materials: flash joule heating and other methods. Advanced Materials. 2022;34(8):2106970. https://doi.org/10.1002/adma.202106970

21. Wyss K.M., De Kleine R.D., Couvreur R.L., et al. Upcycling end-of-life vehicle waste plastic into flash graphene. Communications Engineering. 2022;1(1):3. https://doi.org/10.1038/s44172-022-00006-7

22. Wyss K.M., Li J.T., Advincula P.A., et al. Upcycling of waste plastic into hybrid carbon nanomaterials. Advanced Materials. 2023;35(16):2209621. https://doi.org/10.1002/adma.202209621

23. Eddy L., Luong D.X., Beckham J.L., et al. Automated laboratory kilogram‐scale graphene production from coal. Small Methods. 2024;8(3):2301144. https://doi.org/10.1002/smtd.202301144

24. Huang P., Zhu R., Zhang X., Zhang W. Effect of free radicals and electric field on preparation of coal pitch-derived graphene using flash Joule heating. Chemical Engineering Journal. 2022;450:137999. https://doi.org/10.1016/j.cej.2022.137999

25. Stanford M.G., Bets K.V., Luong D.X., et al. Flash graphene morphologies. ACS Nano. 2020;14(10):13691– 13699. https://doi.org/10.1021/acsnano.0c05900

26. Advincula P.A., Luong D.X., Chen W., et al. Flash graphene from rubber waste. Carbon. 2021;178:649– 656. https://doi.org/10.1016/j.carbon.2021.03.020

27. Prokopev A.R., Vasilieva E.D., Loskin N.N., Popov D.N. Production of graphene-containing carbon powders via fast Joule heating for fiberglass modification. Arctic and Subarctic Natural Resources. 2024;29(4):651– 660. (In Russ.) https://doi.org/10.31242/2618-9712-2024-29-4-651-660

28. Kanel G.I., Razorenov S.V., Baumung K., et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. Journal of Applied Physics. 2001;90(1):136–143. https://doi.org/10.1063/1.1374478

29. Ferrari A.C., Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B. 2001;64(7):075414. https://doi.org/10.1103/PhysRevB.64.075414

30. Casiraghi С., Ferrari A.C., Robertson J. Raman spectroscopy of hydrogenated amorphous carbons. Physical Review B. 2005;72(8):085401. https://doi.org/10.1103/PhysRevB.72.085401

31. Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon Physical Review B. 2000;61(20):14095. https://doi.org/10.1103/PhysRevB.61.14095

32. Ferrari A.C., Basko D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology. 2013;8(4):235–246. https://doi.org/10.1038/nnano.2013.46

33. Timofeeva T.E., Neustroev E.P., Popov V.I., et al. Application of wavelet transforms to the analysis of components of the 2D peak of the Raman spectrum of three- and four-layer graphene. Optics and spectroscopy. 2018;125(5):588–594. (In Russ.)

34. Liu X., Luo H. Preparation of coal-based graphene by flash joule heating. ACS Omega.2024;9(2):2657–2663. https://doi.org/10.1021/acsomega.3c07438

35. Patankar N.A. Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir. 2004;20(19):8209–8213. https://doi.org/10.1021/la048629t

36. Randviir E.P., Brownson D.A., Gómez-Mingot M., et al. Electrochemistry of Q-graphene. Nanoscale. 2012; 4(20):6470–6480. https://doi.org/10.1039/C2NR31823G

37. Neustroev E.P., Prokopiev A.R., Popov V.I., et al. Optical properties of thin films formed by carbon deposition in methane plasma and subsequent annealing AIP Conference Proceedings. 2021;2328(1):050017. https://doi.org/10.1063/5.0042175


Review

For citations:


Neustroev E.P., Prokopev A.R. Fast Joule heating of carbon films formed by methane plasma deposition. Arctic and Subarctic Natural Resources. 2025;30(1):162-170. (In Russ.) https://doi.org/10.31242/2618-9712-2025-30-1-162-170

Views: 62


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)