Preview

Arctic and Subarctic Natural Resources

Advanced search

Granitoid magmatism of the Chokhchuro-Chekurdakh zone (north of the Verkhoyansk-Kolyma orogen)

https://doi.org/10.31242/2618-9712-2025-30-1-28-48

Abstract

This article presents findings from research conducted on the Mesozoic intrusive magmatism within the ChokhchuroChekurdakh zone (CCZ). This zone extends in a submeridional direction across the Primorskaya (Yano-Indigirka) lowland, from the Bakyn massif of the Northern batholith belt in the south to Cape Svyatoy Nos on the Laptev Sea in the north. All granitoid massifs of this series intrude upon the folded strata of the Late Jurassic and Early Cretaceous periods. Their location is controlled by a regional deep fault zone, indicating that the massifs formed during the postcollision stage of the tectonic stretching process. Available data suggest a close timeframe for their formation, estimated at 105–109 million years ago, as determined by the 39Ar–40Ar dating method. Petrography, mineralogy and petro-geochemical features of rocks, forming the massifs of the zone and their associated dikes are examined. The P–T parameters of the generation for parent melts and the crystallization of granitoids are calculated. It has been determined that the granitoids of the massifs of the northern part of the zone belong to I type granitoids, which formed in a suprasubduction environment. In contrast, the massifs of the southern part of the zone and the postgranitic dikes of rhyolite-porphyry are defined as A-type granites, formed under the conditions of the continental margin (granites of massifs) and close to the continental rift-related one (dikes of rhyolite-porphyry). The temperatures and pressures during magma generation are close for all massifs in the zone, indicating a change in the composition of magma-forming substrates along the zone from north to south. Geochemical criteria correspond to the crustal origin of the granitoids, whereas the high temperatures of magma generation (1000–1200 °C) and the beginning of crystallization (900– 1150 °C) require the inflow of juvenile heat to begin melting crustal substrates.

About the Author

V. A. Trunilina
Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Trunilina Vera Arkadyevna, Dr. Sci. (Geol. and Mineral.), Chief Researcher

Scopus Author ID: 6506344347

Yakutsk



References

1. Parfenov L.M., Kuz’min M.I. (Eds.) Tectonics, Geodynamics and Metallogeny of the Sakha Republic (Yakutia). Moscow: MAIK Nauka/Inteperiodica, 2001; 571 p. (In Russ.)

2. Spector V.B., Grinenko V.S. Geological Map of Yakutia 1:500 000 scale. Nizhneyansk block. St. Petersburg: VSEGEI; 1995. (In Russ.)

3. Prokhorova S.M., Ivanov O.A. Tin-bearing granitoids of the Yano-Indigirska lowland and associated placers. Leningrad: Nedra; 1978. 291 p. (In Russ.)

4. Luchitskaya M.V., Моiseev А.V. Age, Composition and Geodynamic Setting of Granitoids and Dike Rocks from Cape Svyatoi Nos, Eastern Arctic. Geotectoniсs. 2020;(3):29–54.

5. Lopatin B.G.(Ed.) State Geological Map of Russian Federation. Scale 1: 1000 000 (new series). Sheet S-53- 55 – Novosibirsk Islands. Explanatory note. St. Petersburg: VSEGEI; 1999. 208 p. (In Russ.)

6. Samusin A.I., Belousov K.N., Ivanov A.M. Geological Map of USSR. 1: 200 000 scale. The Novosibirsk Islands series. Sheets S-53: An explanatory note. Moscow: Min. GeO USSR (VSEGEI); 1985. 130 p. (In Russ.)

7. Natapov L.M., Surmilova E.P. (Eds.). Geologic map of the USSR. Sheet R-53-55. Deputatskiy. Scale 1:1 000 000 (new series). Explanatory note. St. Petersburg: VSEGEI; 1992. 111 p.(In Russ.)

8. Orlov Yu.S., Trunilina V.A., Kholmogorov A.I. Magmatism of the Chokhchuro-Chekurdakh volcanic-plutonic zone. Otechestvennaya geologiya. 2000;(5):66–70.(InRuss.)

9. Layer P.W., Newberry R., Fujita K., et al. Tectonic setting of the plutonic belts of Yakutia, northeast Russia, based on 40Ar/39Ar geochronology and trace element geochemistry. Geology. 2001;29(2):167–17.

10. Yavuz F. Win Pyrox: A Windows program for pyroxene calculation classification and thermobarometry. Amer. Miner. 2013;98:1338–1359.

11. Hollister L.S., Grisson G.P., Peters E.K., et al. Confirmation of the empirical correlation on the Al in hornblende with pressure of solidification of calc-alkaline plutons. Amer. Miner. 1987;72(3-4):231–239.

12. Rudolfi R., Renzolli A. Calcic amphiboles in calcalkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130 °C and 2,2 Gpa. Contribution to Mineralogy and Petrology. 2012;163:877–895. Doi: 10.1007/s00410-011-0704-6.

13. Tindle A.G., Webb R.P. Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. European J. of Minerоlogy. 1990;(2):595–610.

14. Troshin Y.P., Grebenschikova V.I., Antonov А.Y. Volatile components in biotites and metallogenic specialization of intrusions. In: Rudenko S.A., Rundkvist D.V. (eds). Mineralogical criteria for ore content assessment. Leningrad: Nauka; 1981, pp. 73–83. (In Russ.)

15. Henry D.A., Guidotti Ch.V., Thompson J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implication for geothermometry and Ti-substitution mechanismus. Amer. Miner. 2005;90:316–328.

16. Uchida E., Endo S., Makino V. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology. 2007;57(1):47–56.

17. Gusev A.I. Typification of granitoids, based on biotite composition. Successes of modern natural science. 2009;(4): 54–57. (In Russ.)

18. Bushlyakov I.N., Kholodnov V.V. Halogens in Petrogenesis of Granitoids. Moscow: Nedra; 1986. 192 p. (In Russ.)

19. Brimhall G.H., Crerar D.A. Ore fluids: Magmatic to supergene, in Thermodynamic modeling of geological materials: Minerals, fluids and melts, I. Mineralogic Society of America Reviews in Mineralogy. 1987; V. 17(1): 235–321. https://doi.org/10.1515/9781501508950-010

20. Wones D.R., Eugster H.P. Stability of biotite: experiment, theory and application. Amer. Mineral. 1985;(9): 1228–1272.

21. Sharpenok L.N., Kostin A.E., Kukharenko E.A. TASdiagram sum of alkalis-silica for chemical classification and diagnostics of plutonic rocks. Regional Geology and Metallogeny. 2013;(56):40–50. (In Russ.)

22. Peccerillo A., Taylor S.R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contrib. Miner. Petrol. 1976;58: 63–81. DOI: 10.1007/BF00384745

23. Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids. Geol. Soc. Americ Bull. 1989;101:635–643. 10.1130/0016-7606(1989)1012.3. CO;2

24. Maeda J. Opening of the Kuril Basin deduced from the magmatic history of Central Hokkaido, northern Japan. Tectonophysics. 1990;(174):235–255.

25. Eby G.N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology. 1992;20:641–644.

26. French W.J., Cameron E.P. Calculation on the temperature of crystallization of silicates from basaltic melts. Mineralogical Magazine. 1981;44:19–26.

27. Belyaev G.М., Rudnik V.А. Formational-Genetic Types of Granitoids. Leningrad: Nedra; 1978. 168 p. (In Russ.)

28. Kulikova V.V., Kulikov V.S. Petrochemical classification of magmatic rocks. Petrozavodsk: Kola scientific center; 2001. 115 р. (In Russ.)

29. Janoušek V., Farrow C.M., Erban V. Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). J. Petrology. 2006;47:1255–1259. 10.1093/petrology/egl013

30. Thornton C.P., Tuttle O.F. Chemistry of igneous rocks, differentiation index. American J. Sciences. 1960; 258(11):664–684.

31. Gerdes A., Worner G., Henk A. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith. Geol. Soc. Lond. 2000;157:577–587.

32. Jung S., Pfander J.A. Source composition and melting temperatures of orogenic granitoids – constrains from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Europen Journal of Mineralogy. 2007;1:5–40.

33. McDonough W.F., Sun S.S. The composition of the Earth. Chemical Geology. 1995;120:223–253.

34. Green T. H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis – Sedona 16 years later. Chemical Geology.1994;117(1-4):1–36.

35. Rudnik R.L., Gao S., Composition of the Continental Crust. In: Holland H.D., Turekian K.K. (eds.). Treatise on Geochemistry. V. 4. (Second edition). Netherlands: Elsevier Ltd., pp. 1–51; 10.1016/B978-0-08-095975-7.00301-6

36. King P.L., White A.J.R., Chappell B.W., Allen C.M. Characterization and Origin of aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology. 1997;38:371–391.

37. Rollinson H.R. Using Geochemical Data: Evalution, Presentation, Interpretation. London: Longman Group Limited; 1993. 261 p.

38. Datsenko V.М. Petrogeochemical typification of granitoids of the south-western framing of the Siberian platform. In: Yushkin N.P. (ed.). Petrography at the turn of the 21st century: Results and prospects. Materials the Second All-Russian Petrographic Meeting. V. 2. Syktyvkar: Komi Scientific Center; 2000, pp. 270–274. (In Russ.)

39. Batchelor R.A., Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985;48:43–55. 10.1016/0009-2541(85)90034-8

40. Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984;25(4):956–983.

41. Thieblemont D., Tegyey M. Une discrimination geochimique des roches differenciees temoin de la diversite d’origine et de situation tectonique des magmas calco-alcalins. Comptes Rendus L’académie Sci. 1994; 319. Ser. II: 87–94.

42. Hofmann A.W. Mantle geochemistry: the message from oceanic volcanism. Nature. 1997;385:219–228.

43. Yadav B.S., Ahmad T., Kaulina T., et al. Origin of post-collisionalA-type granitesin the Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone, India: Zircon U–Pb ages and geochemical evidences. J. Asian Earth Sci. 2020;191:104247.

44. Grebennikov A.V. Granitoids of A-type: problems of diagnostics, formation and systematics. Russian Geology and Geophysics. 2014;55(9):1074–1086. https://doi.org/10.1016/j.rgg.2014.08.003

45. Moreno J.A., Molina J.F., Montero P.O., et al. Unraveling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos. 2014;192–195: 56–85. doi:10.1016/j.lithos.2014.01.010

46. Wang L. X., Ma C.Q., Zhang C. Halogen Geochemistry of Island A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chem. Geol. 2018;478:164–182. 10.1016/j.chemgeo.2017.09.033.

47. Whalen J.B., Hildebrand R.S., de Juan C. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos. 2019;348–349:105179. https://doi.org/10.1016/j.lithos.2019.105179

48. Wu F.Y., Sun D.Y., Li H.M. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chem. Geol. 2002;187 (1/2):143– 173. 10.1016/s0009-2541(02)00018-9

49. Borodin L.S. Petrochemistry of magmatic series. Moskow: Nauka; 1987. 241 p. (In Russ.)

50. Drill S.I., Kuzmin M.I, Tsipukova S.S., Zonenshain L.P. Geochemistry of basalts from the West Woodlark, Lau and Manus basins: implication for their petrogenesis and source rock composition. Marine Geology. 1997;142:57–83.


Review

For citations:


Trunilina V.A. Granitoid magmatism of the Chokhchuro-Chekurdakh zone (north of the Verkhoyansk-Kolyma orogen). Arctic and Subarctic Natural Resources. 2025;30(1):28-48. (In Russ.) https://doi.org/10.31242/2618-9712-2025-30-1-28-48

Views: 81


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)