Preview

Arctic and Subarctic Natural Resources

Advanced search

High-titanium dolerites as a new criterion for the kimberlite prospecting

https://doi.org/10.31242/2618-9712-2022-27-4-499-513

Abstract

The generalization of data on the chemical composition of dolerites of the Vilyui-Markha dike swarm (Vilyui paleorift) made it possible to identify geochemically anomalous areas among them. We found that the amount of TiO2 and a number of highly charged and rare earth elements (Th, Ta, Hf, Y, Nb, REE) practically doubled in the dolerites of dikes located near kimberlite pipes. Moreover, a similar behavior of elements was observed in the dolerites of dikes located near the kimberlites of the Kuoyk field (Molodo dike swarm, Olenek paleorift). Therefore, we conclude that there is a paragenetic relationship between the increase in the content of titanium and rare earth elements in dolerites and kimberlites. We assume that protokimberlites indirectly influenced the tholeiite melt at the time of its melting, which led to local enrichment of the tholeiite melt with refractory components. Weakly manifested processes of geochemical alignment between high-Ti and ordinary basites ensured the locality of the distribution of the former. The kimberlites that penetrated after the basites were located near the dikes of high-titanite dolerites. Thus, the high-Ti dolerites of the dike swarms can be used as one of the criteria for the kimberlites prospecting. Considering the above, two new sections have been allocated within the Vilyui-Markha dike swarm: Tenkelyakh and Kyulyanke, with prospective for the discovery of kimberlites here. We also assume that protokimberlites indirectly influenced the tholeiite melt at the time of its melting, which led to local enrichment of the tholeiite melt in refractory components. Weakly manifested processes of geochemical alignment between high-Ti and ordinary mafic rocks ensured the local distribution of the former. The kimberlites in truded after the basites were located near the dikes of high-Ti dolerites. Thus, high-Ti dolerites of dike belts can be used as one of the search criteria for kimberlites. Finaly two new sites have been identified within the Vilyui-Markhin dike belt: Tenkelyakhsky and Kyulyankinsky, both promising for the discovery of kimberlites here.

About the Authors

M. D. Tomshin
Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

TOMSHIN, Mihail Dmitrievich, Cand. Sci (Geology and Mineralogy), Leading Researcher, Head of the Laboratory

39 Leninа pr., Yakutsk 677980



S. S. Gogoleva
Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

GOGOLEVA, Sargylana Semenovna, Leading Engineer of the Laboratory

39 Leninа pr., Yakutsk 677980



References

1. Levashov K.K. Srednepaleozoyskaya riftovaya sistema vostoka Sibirskoy platformy. Sovetskaya geologiya. 1975;10:49–58. (In Russ.)

2. Polyanskiy O.P., Prokopev A.V., Babichev A.V., Korobeynikov S.N., Reverdatto V.V. The rift origin of the Vilyui basin (East Siberia), from reconstructions of sedimentation and mechanical mathematical modeling. Geologiya i geofizika. 2013;54(2):163–183. (In Russ.)

3. Tomshin M.D., Kopylova A.G., Konstantinov K.M., Gogoleva S.S. Basites of the Vilyui paleorift: geochemistry and sequence of intrusive events. Geologiya i geofizika. 2018;59(10):1503–1518. (In Russ.)

4. Oleynikov B.V., Savvinov V.T., Pogudina M.A. Osnovnye tipy trappovykh intruzivov srednepaleozoyskoy i verkhnepaleozoyskoy-nizhnemezozoyskoy trappovykh formatsiy zony sochleneniya Tungusskoy i Vilyuyskoy sinekliz. Geologiya i geokhimiya bazitov vostochnoy chasti Sibirskoy platformy. Moskva: Nauka; 1973:4–75. (In Russ.)

5. Masaytis V.L., Mikhaylov M.V., Selivanovskaya T.V. Vulkanizm i tektonika Patomsko-Vilyuyskogo avlakogena. Moskva: Nauka; 1975. 174 p. (In Russ.)

6. Courtillot V., Kravchinsky V.A., Quidelleur X., Renne P.R., Gladkochub D.P. Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events. Earth Planet. Sci. Lett. 2010; 300:239–245.

7. Kiselev A.I., Yarmolyuk V.V., Ivanov A.V., Yegorov K.N. Middle paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui rift, Siberia: relations in space and time. Geologiya i geofizika. 2014;55( 2):185–196. (In Russ.)

8. Irvine T.N., Baragar W.R.A. A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci. 1971;8:523–548.

9. Oleynikov B.V. Geokhimiya i rudogenez platformennykh bazitov. Novosibirsk; 1979. 264 p. (In Russ.)

10. Pearce J.A., Cann J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planet. Sci. Lett. 1973;19:290–300.

11. Pearce J.A., Norry M.J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979;69:33–47.

12. Polyansky O.P., Prokopiev A.V., Koroleva O.V., Tomshin M.D., Reverdatto V.V., Selyatitsky A.Yu., Travin A.V., Vasiliev D.A. Time correlation between the formation of dike swarms and crustal extension stages in the Middle Paleozoic Vilyui rift basin (Siberian platform). Lithos. 2017;282-283:45–64. https://doi.org/10.1016/j.lithos.2017.02.020

13. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes / Eds. A.D. Saunders, M.J. Norry. Magmatism in ocean basins. Geol. Soc. London Spec. Publ. 1989;42:313–345.

14. Zemnukhov A.L., Zaytsev A.I., Kopylova A.G., Tomshin M.D., Yanygin Yu.T. Bazitovyy magmatizm UstKhaninskogo mezhdurechya (Yakutiya). Geologiya almazov – Nastoyashchee i budushchee. Voronezh; 2005: 482–494. (In Russ.)

15. Tomshin M.D., Kiselev A.I., Kopylova A.G. Molodinskiy daykovyy poyas srednepaleozoyskikh doleritov na severo-vostoke Sibirskoy platform. Vestnik Ir. GTU. 2010;2(42):24–30. (In Russ.)

16. Agashev A.M., Pokhilenko N.P., Tolstov A.V., Polyanichko V.V., Malkovets V.G., Sobolev N.V. Novye danny o vozraste kimberlitov Yakutskoy almazonosnoy provintsii. Dokl. RAN. 2004;399(1):95–99. (In Russ.)

17. Zaytsev A.I., Smelov A.P. Izotopnaya geokhronologiya porod kimberlitovoy formatsii Yakutskoy provintsii. Yakutsk; Ofset; 2010. 108 p. (In Russ.)

18. Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Y., Sharygin I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos. 2013;160-161:201–215. https://doi.org/10.1016/j.lithos.2012.11.014

19. Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Geologiya i geofizika. 2015;56(1-2):361–383 (In Russ.)

20. Medvedev A.Ya., Almukhamedov A.I., Paradina L.F. Rastvorimost titana v bazaltovom rasplave (po eksperimentalnym dannym). Dokl. RAN. 1987; 293(5):1218–1220. (In Russ.)

21. Le Zhang, Zhong-Yuan Rena, Handlerd M.R., YaDong Wu, Lei Zhang, Sheng-Ping Qiana, Xiao-Ping Xia, Qing Yang, Yi-Gang Xu. The origins of high-Ti and lowTi magmas in large igneous provinces, insights from melt inclusion trace elements and Sr-Pb isotopes in the Emeishan large Igneous Province. Lithos. 2019;344-345: 122–133. https://doi.org/10.1016/j.lithos.2019.06.014


Review

For citations:


Tomshin M.D., Gogoleva S.S. High-titanium dolerites as a new criterion for the kimberlite prospecting. Arctic and Subarctic Natural Resources. 2022;27(4):499-513. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-4-499-513

Views: 131


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)