Effect of Different Soil Hydrothermal Conditions on Production of CO2 from the Leached Chernozem Soil (Modeling Experiment)
Abstract
In controlled hydrothermal conditions it has been shown that the rate of mineralization processes in the leached chernozem soil (the central forest-steppe zone of Western Siberia) is determined mostly by temperature compare to humidity. The intensive phase of the process of mineralization of soil organic matter, due to moisture, is completed in the first 15 days, and the dynamics of the emission CO2 is less dependent on hydrothermal indicators in the experiment. The dynamics of the formation of carbon dioxide affects the amount available in the soil for degradation of plant material that is depleted over time. Consequently there is a gradual decrease in CO2 production soil. Temperature coefficient Q10 for leached chernozem in the temperature range of 10–25 °C varied between 1,3–2,9. It was revealed in the experiment, that the less Q10 ratio, the higher the rate of release of CO2 was from the leached chernozem soil.
About the Author
Andrey Gennadievich ShepelevRussian Federation
References
1. Задорожний А.Н., Семенов М.В., Ходжаева А.К. и др. Почвенные процессы продукции, потребления и эмиссии парниковых газов // Агрохимия. 2010. № 10. С. 75–92.
2. Кононова М.М. Органическое вещество почвы, его природа, свойства и методы изучения. М.: Наука, 1963. 313 с.
3. Курганова И.Н., Лопес де Гереню В.О., Розанова Л.Н. и др. Оценка эмиссии диоксида углерода из пахотных серых лесных почв // Агрохимия. 2002. № 9. С. 52–57.
4. Лопес де Гереню О.В., Курганова И.Н., Розанова Л.Н. и др. Годовая эмиссия диоксида углерода из почвы южнотаежной зоны России // Почвоведение. 2001. № 9. С. 1045–1049.
5. Макаров Б.Н. Газовый режим почвы. М.: Агропромиздат, 1988. 104 с.
6. Почвенно-географическое районирование СССР (в связи с сельскохозяйственным использованием земель). М., 1962. 422 с.
7. Титлянова А.А., Кирюшин В.И., Охинько И.П. и др. Агроценозы степной зоны. Новосибирск: Наука, 1984. 246 с.
8. Шарков И.Н. Абсорбционный метод определения эмиссии СО2 из почв // Методы исследований органического вещества почв. М.: Россельхозакадемия, Изд-во ГНУ ВНИПТИОУ, 2005. С. 401–407.
9. Bekku Y.S., Nakatsubo T., Kume A. et. al. Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils // Applied Soil Ecology. 2003. V. 22. P. 205–210.
10. Buyanovsky С.А., Wagner C.H. Annual cycles of carbon dioxide level in soil air // Soil Science Society of America. 1983. V. 47, № 6. P. 1139–1145.
11. Chen H., Tian H.-Q. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? // Journal of Integrative Plant Biology (Formerly Acta Botanica Sinica). 2005. V. 47, № 11. P. 1288−1302.
12. Ivannikova P.A. Application absorption method to determine the natural flow of CO2 from the soil // Eurasian Soil Science. 1992. № 6. P. 113–139.
13. Kätterer T., Reichstein M., Andren O. et. al. Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different model // Biology and Fertility of Soils. 1998. № 7. P. 258–262.
14. Kirschbaum M.U.F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage //
15. № 6. P. 753–760.
16. Kirschbaum M.U.F. Will changes in soil organic carbon act as a positive or negative feedback on global warming // Biogeochemistry. 2000. V. 48. P. 21–51.
17. Kurganova I.N., de Gerenyu V.O.L., Lancho
18. J.F.G. et. al. Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, mediterranean, and tropical monsoon climates // Eurasian Soil Science. 2012. № 1. P. 82–94.
19. Raich J.W., Potter C.S., Bhagavatti D. Interannual variability in global soil respiration, 1980-94 // Global Change Biology. 2002. № 8. P. 800–812.
20. Raich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate // Tellus. 1992. V. 44B. P. 81–89.
21. Sharkov I.N., Bukreeva S.L., Danilova A.A. The role of easilymineralized organic matter carbon stocks stabilize in arable soils // Contemporary Problems of Ecology. 1997. № 4. P. 363–368.
22. Singh J.S., Gupta S.R. Plant decomposition and soil respiration in terrestrial ecosystems // Botanical Review. 1977. V. 43, № 4. P. 449–528.
23. Tulina A.S., Semenov V.M. Evaluation of the sensitivity of the mineralizable pool of soil organic matter to changes in temperature and moisture // Soil Science. 2015. V. 48, № 8. P. 831–840.
24. Winkler J.P., Cherry R.S., Schlesinger W.H. The Q10 relationship of microbial respiration in a temperate forest soil // Soil Biology and Biochemistry. 1996. V. 28. P. 1067–1072.
Review
For citations:
Shepelev A.G. Effect of Different Soil Hydrothermal Conditions on Production of CO2 from the Leached Chernozem Soil (Modeling Experiment). Arctic and Subarctic Natural Resources. 2017;22(1):53-62. (In Russ.)