The Effect of Variations of Geomagnetic Activity on the Growth Phase of the 24th Solar Cycle on the Pipeline
Abstract
The results of measurements of telluric currents flowing through pipelines during geomagnetic storms are presented. Also, the measurements of electrical currents flowing through pipelines laid in permafrost in Yakutia during the discharge of lightning, terminated on the ground near pipelines, are presented. The influence of a direct current flowing through a metallic pipe on the «pipe-ground» potential variation in the piece of a pipeline with the length of 150 m and diameter of 110 mm is measured. The frequency of occurrence of a certain level of the rate of change of geomagnetic activity can be expressed as a power law with an exponent of the order –1.7, and the probability of exceedance of a given level can be expressed by the law lg(P)=– 0.0517(dB/dt)–0.1946. The largest high-frequency variations are noted during the recovery phase of magnetic bay and correspond to geomagnetic pulsations of the Pc5 range (a period of variations of 200–300 s). On a pipeline on these pulsations, other high-frequency variations are imposed and they start earlier – from a maximum of bay of disturbance. During strong geomagnetic storms and during a thunderstorm at a distance of 10 km around the pipeline, geomagnetic induced currents appear in it, reaching tens or even hundreds of amperes. As a result, the potential of soil-pipeline increases and it can increase the corrosion rate of a pipeline.
About the Authors
Yuriy Mikhailovich Grigor’evRussian Federation
Ekaterina Nyurgunovna Efremova
Russian Federation
Vladimir Ilyich Kozlov
Russian Federation
Lena Dmitrievna Tarabukina
Russian Federation
Aleksey Anatolievich Korsakov
Russian Federation
References
1. Авакян С.В., Воронин Н.А. Роль космических и ионосферных возмущений в глобальных климатических изменениях и коррозии трубопроводов // Исследования Земли и космоса. 2011. Т. 3. С.14–29.
2. Torta J.M., Marsal S., Quintana M. Assessing the hazard from geomagnetically induced currents to the entire high-voltage power network in Spain // Earth Planets and Space 66(1), 87 (2014).
3. Dowden R.L., Brundell J.B., Rodger C.J. VLF lightning location by time of group arrival (TOGA) at multiple sites // J. Atmos. Solar-Terr. Phys. 64(7), 817–879 (2002).
4. Tarabukina L.D., Kozlov V.I., Karimov R.R., Mullayarov V.A. Spatial distribution of lightning strikes over North Asia // Proc. SPIE 9680, 96805S (2015).
5. Kozlov V.I., Mullayarov V.A., Vasilyev A.E. Characteristics of thunderstorm cores in Yakutia in 1993–2001 from instrumental observations // Russian Meteorology and Hydrology. 3, 27–31 (2003).
6. Abarca S.F., Corbosiero K.L., Galarneau T.J. Jr. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth // J. Geophys. Res. 115, D18206 (2010).
7. Boteler D.H., Pirjola R.J., Nevanlinna H. The Effects of Geomagnetic Disturbances on Electrical Systems at the Earth's Surface // Adv. Space Res. 1998. V. 22. P. 17–27.
8. Koen J., Gaunt C.T. Geomagnetically induced currents at mid-latitudes / URSI, Maastricht, August 2002.
9. Фуркин А.В., Третьякова М.В., Агиней Р.В. Влияние протекающего по подземному трубопроводу постоянного электрического тока на потенциал «труба–земля» // Труды Коми научного центра Уральского отделения РАН. 2014. Т. 1 (17). С. 80–83.
Review
For citations:
Grigor’ev Yu.M., Efremova E.N., Kozlov V.I., Tarabukina L.D., Korsakov A.A. The Effect of Variations of Geomagnetic Activity on the Growth Phase of the 24th Solar Cycle on the Pipeline. Arctic and Subarctic Natural Resources. 2017;22(2):48-52. (In Russ.)