Evaluation of the Radiation Coefficient Effect in Total Heat Transfer between Network Pipeline and Water Pipes in Joint Installation
Abstract
This paper considers a mathematical model of joint laying of water pipeline networks and dis- trict heat networks. The purpose of the work is to study the effect of radiation on the process of complex heat exchange taking place in the housing insulation between structural elements. The results of mathematical simulation of the heat loss taking into account the radiant component are given. When calculating the heat flows which are lost in the pipeline through thermal insulation at transporting the coolant, the heat transfer process is usually considered by means of conduction and convection. The radiant component is neglected in most cases. The influence of heat transfer by radiation and convection is particularly noticeable using ther- mal insulation products with large pores and air gaps. A ground configuration of a pipe line and water pipe line laid in a joint thermal insulation made of mineral wool is considered. When laying joint pipelines, complex radiative heat transfer occurs. It consists, for each one of these pipelines, of radiation reflected from the other pipeline and self-radiation. A non-stationary temperature field of the structure, consisting of two parallel stacked pipes with different diameters lying in a joint insulating structure made of mineral wool, is calculated. The construction elements exchange heat with each other and the environment by convection and radiation.
About the Authors
Anatoliy Viktorovich StepanovRussian Federation
Gulnara Nikolaevna Egorova
Russian Federation
References
1. Местников А.Е., Абрамова П.С. Тепловая защита зданий на Севере: материалы, изделия, конструкции. М.: Изд-во АВС, 2009. 236 с.
2. Степанов А.В., Тимофеев А.М. Развитие строительной теплофизики в регионах холодно- го климата // Труды III Евразийского симпозиу- ма: Пленарные доклады. Якутск: Изд-во ЯФ СО РАН, 2006. С. 170–176.
3. Михеев М.А. Основы теплопередачи. М.; Л.: Государственное энергетическое издатель- ство, 1949. 397 с.
4. Оцисик М.Н. Сложный теплообмен. М.: Мир, 1976. 616 с.
5. Hawkey D.J.C. District heating in the UK: A Technological Innovation Systems analysis // Envi- ronmental Innovation and Societal Transitions. 2012. V. 5. P. 19–32.
6. Соколов Е.Я. Теплофикация и тепловые сети. М.: МЭИ, 1999. 472 с.
7. Михеев М.А., Михеева И.М. Основы теплопе- редачи. Изд. 2-е, стереотип. М.: Энергия, 1977. 344 с.
8. СНиП 41-03-2003. Тепловая изоляция обо- рудования и трубопроводов. М.: Изд-во стан- дартов, 2004. 25 с.
9. Даниэлян П.И., Яницкий П.А. Температур- ный режим движения жидкости по двум парал- лельным трубам // Изв. АН СССР. Энергетика и транспорт. 1988. № 3, С. 100–107.
10. Пасконов В.М., Полежаев В.И., Чудов Л.А. Численное моделирование процессов тепло- и массообмена. М.: Наука, 1984. 288 с.
11. Красников Г.Е., Нагорнов О.В., Старо- стин Н.В. Моделирование физических процес- сов с использованием пакета Comsol Multi- physics: Учебное пособие. М.: НИЯУ МИФИ, 2012. 184 с.
12. Новицкий П.В., Зограф И.А. Оценка по- грешностей результатов измерений. Л.: Энерго- издат, 1991. 304 с.
Review
For citations:
Stepanov A.V., Egorova G.N. Evaluation of the Radiation Coefficient Effect in Total Heat Transfer between Network Pipeline and Water Pipes in Joint Installation. Arctic and Subarctic Natural Resources. 2017;22(4):98. (In Russ.)