Method of GPR Evaluation of the Humidity of Dispersed Rocks
Abstract
Potential of GPR data for evaluation of rocks humidity is considered. A method for evaluation of humidity of dispersed rocks by an empirical formula is proposed, which is based on determination of a rela- tive change in the delay time (Nt) of GPR signals reflected from interfaces of media in frozen (tM, ns) and thawed (tT, ns) condition. The method was tested in field conditions at two sites in Central Yakutia. The GPR data are considered within an active layer, in a period of complete freezing and defrosting of the rocks. In the first site of testing the data values were taken from a part of a profile in the vicinity of the borehole test drill- ing. The average time delay of a GPR signal from the reference boundary at the depth of 1.7 m was calculat- ed by three neighboring points of sounding. The relative change of the delay time of the signals Nt is evaluat- ed. The average humidity content is calculated by the proposed formula. In accordance with the method the humidity distribution along the GPR profile in the second site of testing is also determined. Application of the method will allow to evaluate humidity of dispersed rocks remotely and its changes under the influence of various climatic and anthropogenic factors within the active layer of the permafrost zone rock mass.
About the Authors
Larisa Lukinichna FedorovaRussian Federation
Gavril Aleksandrovich Kulyandin
Russian Federation
References
1. Пути повышения эффективности и эколо- гической безопасности открытой добычи твер- дых полезных ископаемых / [В.И Ческидов и др.]; отв. ред. В.Н. Опарин; Рос. акад. наук, Сиб. отд-ние, Ин-т горного дела и [др.]. Новоси- бирск: Изд-во СО РАН, 2010. 254 с.
2. Фролов А.Д. Электрические и упругие свойства мерзлых пород и льдов. Пущино: ОН- ТИ ПНЦ РАН, 2005. 607 с.
3. Федоров В.Н., Федорова Л.Л. Электроди- намическое моделирование структурных осо- бенностей массива горных пород россыпных месторождений при георадиолокации // Изв. вузов. Физика. 2015. Т. 58, № 8/2. С. 48–51.
4. Федорова Л.Л., Федоров М.П., Стручков А.С., Саввин Д.В. Основы информационно- программного обеспечения георадиолокацион- ных исследований состояния грунтов автодорог криолитозоны в режиме мониторинга // Горн. информ.-аналит. бюл. 2015. № 7. Спец. вып. 30: Геомеханические и геотехнологические про- блемы освоения недр. С. 325–332.
5. Федорова Л.Л., Федоров М.П., Стручков А.С., Саввин Д.В. Программно-методическое обеспечение георадиолокационного мониторин- га криогенных процессов в подповерхностных грунтах // Горн. информ.-аналит. бюл. 2016.
6. № 8. Спец. вып. 21: Проблемы комплексного освоения георесурсов. С. 154–163.
7. Fedorova L. L., Savvin D. V., Fedorov M. P., Struchkov A. S. GPR Monitoring of Cryogenic Pro- cesses in Subgrade Soils // GPR 2016: 16th Interna- tional Conference of Ground Penetrating Radar in The Hong Kong Polytechnic University on 13–16 June 2016. Hong Kong, 2016. http://ieeexplore.ieee.org/ document/7572624/ (accessed: 18.01.2017 г.).
8. Lunt I.A., Hubbard S.S. and Rubin Y. Soil moisture content estimation using ground penetrat- ing radar reflection data // Journal of Hydrology. 2005. V. 307, Issues 1–4. P. 254–269. DOI: 10.1016/j.jhydrol.2004.10.014.
9. Laurens S., Balayssac J.P., Rhazi J., Klysz G. and Arliguie G. Non-destructive evaluation of con- crete moisture by GPR: Experimental study and direct modeling // Materials and Structures. 2005. V. 38, no. 283, P. 827–832.
10. Lambot S., Antoine M., van den Bosch I., Slob E.C. and Vanclooster M. Electromagnetic in- version of GPR signals and subsequent hydrody- namic inversion to estimate effective vadose zone hydraulic properties // Vadose Zone Journal. 2004. V. 3, no. 4. P. 1072–1081. DOI:10.2136/vzj2004.1072.
11. Lambot S., Rhebergen J., van den Bosch I., Slob E.C. and Vanclooster M. Measuring the soil water content profile of a sandy soil with an off- ground monostatic ground penetrating radar // Va- dose Zone Journal. 2004. V. 3, no. 4. P. 1063–1071.
12. Loeffler O. and Bano M. Ground penetrating radar measurements in a controlled vadose zone: Influence of the water content // Vadose Zone Jour- nal. 2004. V. 3, no. 4. P. 1082–1092.
13. Владов М.Л., Старовойтов А.В. Введение в георадиолокацию. М.: Изд-во МГУ, 2004. 153 с.
14. Huisman J., Sperl C., Bouten W. and Ver- straten J. Soil water content measurements at dif- ferent scales: Accuracy of time domain reflectome- try and ground penetrating radar // Journal of Hy- drology. 2001. No. 245, Issues 1–4. P. 48–58.
15. Topp G.C., Davis J.L. and Annan A.P. Elec- tromagnetic determination of soil water content: Measurements in coaxial transmission lines // Wa- ter Resour. Res. 1980. No. 16. P. 574–582.
16. Ledieu J., P. De Ridder, P. De Clerck and Dautrebande S. A method of measuring soil mois- ture by time domain reflectometry // J. Hydrol. (Amsterdam). 1986. No. 88, Issues 3–4. P. 319–328.
17. Herkelrath W.N., Hamburg S.P. and Murphy F. Automatic, real-time monitoring of soil moisture in a remote field area with time domain reflectome- try // Water Resour. Res. 1991. No. 27, P. 857–864.
18. Нерадовский Л.Г. Опыт применения гео- радиолокации на Северо-Востоке Якутии // Ин- женерные изыскания. 2013. №2. С. 26–37.
19. Омельяненко А.В., Федорова Л.Л. Геора- диолокационные исследования многолетне- мерзлых пород. Якутск: Изд-во ЯНЦ СО РАН, 2006. С. 26–41.
Review
For citations:
Fedorova L.L., Kulyandin G.A. Method of GPR Evaluation of the Humidity of Dispersed Rocks. Arctic and Subarctic Natural Resources. 2017;22(4):76. (In Russ.)