Preview

Arctic and Subarctic Natural Resources

Advanced search

Petrology and ore content of magmatic formations of the Ukachilan ore field (northeast Yakutia)

Abstract

The article concentrates on geology, petrology, crystallization conditions and geochemical features of granitoids and dykes of the Ukachilkani ore field with a complex cassiterite-silicate-sulfide mineralization. The ore field is localized on the border of Polousnyi synclinorium and buried structures of Primoskyi lowlands. The main ore bodies are confined to areas of intensive development of dikes and significantly divorced in time from the formation of granitoids of Ukachilkan massif. Geochemical specialization of all magmatic rocks on Bi, Sb, As, Ag is identified, that corresponds to the fact that crystalline basement rocks are enriched with these elements, while terrigenous strata are depleted in these elements and tin. The Sn content in granitoids of the massif is closey to clarke and its redistribution during differentiation of the melt and autometasomatism is not registered. Crystallization of granitoids took place in conditions of low activity of fluoride and high activity of oxygen, unfavorable for the generation of tin mineralization. Maximum concentrations of tin and associated elements characterize the rocks of the dikes crystallized from water-saturated melts at high activity of water, chlorine and sulfur, i.e. they could be sources of ore-bearing solutions. Dikes trachyandesite and trachydolerite are maximally enriched with ore and volatile elements; parental meltsof these dikes fre formed in metasomatized mantle. It is suggested that, melts that formed complexes of dikes, primarily of basic composition, were one of the main sources of tin and associated elements. It is shown that the main features of potential tin content – presence of minerals-concentrators of tin and associated elements and fluid regime of crystallization. Geochemical specialization of dikes on Au and high activity of chlorine with their crystallization resulted in formation of the related gold mineralization.

About the Authors

Vera Arkadievna Trunilina
Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences
Russian Federation


Sergei Prokopievich Roev
Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences
Russian Federation


References

1. Gusev A.I. Tipizaciya granitoidov na osnove sostavov biotitov // Uspekhi sovremennogo estestvoznaniya, 2009, № 4, pp. 54–57.

2. Dacenko V.M. Petrogeohimicheskaya tipizaciya granitoidov yugo-zapadnogo obramleniya Sibirskoj platformy // Materialy Vtorogo Vseross. Petrograf. Sovesch, vol. 2.: Syktyvkar, 2000, pp. 270–274.

3. Diman E.N., Nekrasov I.Y. Vysokotemperaturnaya rastvorimost' zolota v vode i genezis zolotorudnyh mestorozhdenij // Izv. VUZov. Geologiya i razvedka, 1987, № 11, pp. 66–74.

4. Ermolov P.V., Izoh A.E., Vladimirov A.G. Granat kak indikator uslovij granitoobra-zovaniya v kore //DAN SSSR, 1979, vol. 246, № 1, pp. 208– 211.

5. Indolev L.N. Dajki rudnyh rajonov Vostochnoj Yakutii. – Moscow: Nauka, 1979, p. 194.

6. Kulikova V.V., Kulikov V.S. Petrohimicheskaya klassifikaciya magmaticheskih porod, Petrozavodsk, 2001, p. 152.

7. Lyahovich V.V. Akcessornye mineraly gornyh porod. Moscow: Nedra, 1979, p. 296.

8. Nekrasov I.Y. Olovo v magmaticheskom i postmagmaticheskom processah. Moscow: Nauka, 1984, p. 238.

9. Nekrasov I.Y., Trunilina V.A., Roev S.P. Tipomorfnye osobennosti akcessornyh sul'fidov iz granitoidov Vostochnoj YAkutii kak kriterij ocenki ih rudonosnosti // Mineralogicheskij zhurnal, 1990, № 4, pp. 16–26.

10. Nenahov V.M., Ivannikov V.V., Kuznecov L.V., Strik Y.N. Osobennosti izucheniya i geologicheskogo kartirovaniya kollizionnyh granitoidov. Moscow: Roskomnedra, 1992, p. 101.

11. Nenashev N.I., Zajcev A.I. Geohronologiya i problemy genezisa granitoidov Vostochnoj Yakutii. Novosibirsk: Nauka, 1980, p. 238.

12. Ovchinnikov L.N. Prikladnaya geohimiya. Moscow: Nedra, 1990, p. 248.

13. Troshin Y.P., Grebenschikova V.I., Antonov

14. A.Y. Letuchie komponenty v biotitah i metallogenicheskaya specializaciya intruzij // Mineralogicheskie kriterii ocenki rudonosnosti. Leningrad: Nauka, 1981, pp. 73–83.

15. Trunilina V.A. Olovonosnye rudnomagmaticheskie sistemy Vostochnoj Yakutii // Geologiya i Geofizika, 1991, № 9, pp. 98–105.

16. Trunilina V.A., Orlov Y.S., Roev S.P. Geologiya i rudonosnost' magmatitov hrebta Polousnogo. Yakutsk: Izd. Yakutskogo nauchnogo centra SO RAN, 1996, p. 132.

17. Trufanov G.V., Blagoveschenskij M.G. Gosudarstvennaya geologicheskaya karta SSSR. Seriya Yano-Indigirskaya. List R 54-XIII-XIV. Obyasnitel'naya zapiska. Moscow: Nedra, 1978, p. 62.

18. Yakovlev Y.V. Ukachilkanskoe mestorozhdenie – predstavitel' arsenopirit-pirrotinovogo tipa kassiterit-sul'fidnoj formacii // Genezis olovorudnyh mestorozhdenij i svyaz' ih s magmatizmom na territorii Yakutii. Yakutsk: Izd. Yakutskogo filiala SO AN SSSR, 1975. pp. 50–79.

19. Anderson J.L., Smith D.R. The effect of temperature and oxygen fugacity in Al in hornblende Barometry // Amer. Mineral., 1995, vol. 80, pp. 549–559.

20. Brimhall G.H., Crerar D.A. Ore fluids: Magmatic to supergene. In thermodynamic modeling of geological materials // Minerals, Fluids and Melts. Reviews in mineralogy. Michigan, 1987, vol. 17, pp. 235–321.

21. Brown G.G. A comment on the role of water in the partial fusion of crystal rocks // Earth and Planet. Sci. Lett., 1970, vol. 9, pp. 13–22.

22. Соndie K.C., Banagar R.A. Rare-Earth element distribution in volcanic rocks from Archean Greenstone Belts // Contrib. Mineral., Petrol., 1974, vol. 45, pp. 237–246.

23. Foerster H.J. Halogen Fugicities (HF, HCl) in Melts and Fluids. A. Surv. of Published Data. //

24. Z. geol. Wissenschaft, 1990, vol.18, pp. 255–266.

25. Gerdes A., Worner G., Henk A. Postcollisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith // J.Geol. Soc. London, 2000, vol. 157, pp. 577–587.

26. Henry D.A., Guidotti Ch.V., Thompson J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implication for geothermometry and Ti-substitution mechanisms // Amer. Miner., 2005, vol. 90, pp. 316–328.

27. Jung S., Pfander J.A. Source composition and melting temperatures of orogenic granitoids – constrains from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry // Europen Journal of Mineralogy, 2007, № 1, pp. 5–40.

28. Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geological Society of America Bulletin, 1989, vol. 101, pp. 635–643.

29. Rudilfi R., Renzolli A. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130oC and 2,2 Gpa // Contrib. Miner. Petrol., 2012, vol. 163, pp. 877–895.

30. Trunilina V.A., Orlov Ju.S., Fedotov M.V. Composition of the crystalline basement of the Verkchoyansk-Kolyma Mesozoides // Zeitschrift Geol. Wissenschaft, Berlin, 1994, pp. 147–152.

31. Uchida E., Endo S., Makino M. Relationship between solidification depth of granitic rocks and formation of hydrothermal Ore deposits // Resource Geology, 2007, vol. 57, № 1, pp. 47–56.

32. Wilson M. Igneous petrogenesis. – Unwin Hayman, London, 1989.

33. Wones D.R., Eugster H.P. Stability of biotite: experiment, theory and application. //Amer. Mineral., 1985, № 9, pp. 1228–1272.

34. Yavuz F. Win Pyrox: A Windows program for pyroxene calculation classification and thermobarometry // Amer. Mineral., 2013, vol. 98, pp. 1338–1359.


Review

For citations:


Trunilina V.A., Roev S.P. Petrology and ore content of magmatic formations of the Ukachilan ore field (northeast Yakutia). Arctic and Subarctic Natural Resources. 2018;23(1):16-29. (In Russ.)

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)