Preview

Arctic and Subarctic Natural Resources

Advanced search

Genesis of Endogenic Geological Processes According to Data on the Hot Heterogeneous Accretion of the Earth

Abstract

. Compositions of gneisses from the Early Precambrian crystalline complexes of the Aldan shield and of mantle xenoliths from kimberlites plot along the magmatic fractionation trends. Their isotope age and crystallization temperature decrease in accord with the sequence of their formation during fractionation. This indicates that the crystalline crust and mantle formed as a result of crystallization and fractionation of a layered magma ocean. Evidence of chemical disequilibrium between the mantle rocks and metallic iron suggests that accretion of the Earth’s core occurred before that of the silicate mantle under the effect of magnetic forces. In the silicate magma ocean, which originated through impact melting, there occurred processes of compressional crystallization and fractionation of its near-bottom parts. Due to a very low pressure in the incipient magma ocean, the early formed residual melts varied in composition from granites to tholeiites. This provided very early formation of the acid crystalline crust. An increase in temperature during the accretion process resulted in the higher temperature of the upper mantle as compared to the lower one. For this reason the lower mantle plumes did not ascend in the Early Precambrian, and magmas in ancient platforms were forming mainly from residual melts of compositionally varying layers of the magma ocean. In the Phanerozoic, the temperature of the lower mantle became higher than that of the upper one. As a result, lower mantle plumes and oceans came into existence. In the ascending mantle plumes, basic eclogites were subject to decompression melting. Fractionation of the formed magma chambers led to the formation of acid magmas under low pressure conditions and of various alkali-basic magmas under high pressures.

About the Author

Vladimir Stepanovich Shkodzinskiy
Diamond and Precious Metal Geology Institute, SB RAS
Russian Federation


References

1. Grin D.H. Sostav bazal'tovyh magm kak kriterij ih vozniknoveniya pri vulkanizme / Red. E. Bullard, Dzh. Kann, D. Met'yuz // Petrologiya izverzhennyh i metamorficheskih porod dna okeana. Moscow: Mir, 1973, pp. 242–261.

2. Shkodzinskij V.S. Fazovaya evolyuciya magm i petrogenezis. Moscow: Nauka, 1985, p. 232.

3. Shkodzinskij V.S. Problemy fiziko-himicheskoj petrologii i genezisa migmatitov (na primere Aldanskogo schita). Novosibirsk: Nauka, 1976, p. 224.

4. Arndt N.T. The separation of magmas from partially molten peridotite // Carnegie Inst. Wash. Yearb,1977, vol. 76, p. 424–428.

5. Shkodzinskij V.S. Petrologiya litosfery i kimberlitov (model' goryachej geterogennoj akkrecii Zemli). Yakutsk: Izd. SVFU, 2014, p. 452.

6. Ringvud A.E. Proiskhozhdenie Zemli i Luny. Moscow: Nedra, 1982, p. 294.

7. O’Neil H.S. Oxygen fugacity and siderophile elements in the Earth’s mantle: implications for the origin of the Earth // Meteoritics, 1990, vol. 25 (4), p. 395.

8. Harris P.G, Tozer D.C. Fractionation of iron in the Solar system // Nature, 1967, vol. 215, pp. 1449–1451.

9. Vojtkevich G.V. Proiskhozhdenie i himicheskaya evolyuciya Zemli. Moscow: Nedra, 1983, p. 168.

10. Yin Q., Jacobsen S., Yamashita K., BlicherToft J., Telouk O.P., Albarede F.A. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites // Nature, 2002, vol. 418, pp. 949–952.

11. Snyder G.A., Borg L.E., Nyquist L.E., Taylor L.A. Chronology and isotopic constrains on Lunar evolution // The origin of the Earth and Moon. Univ. of Ariz. Press, 2000, pp. 361–395.

12. Shkodzinskij V.S. Genezis magm po sovremennym dannym o goryachej akkrecii Zemli // Nauka i obrazovanie, 2017, № 2 (86), pp. 5–10.

13. Berezkin V.I., Smelov A.P., Zedgenizov A.N., Kravchenko A.A., Popov N.V., Timofeev V.F., Toropova L.I. Geologicheskoe stroenie central'noj chasti Aldano-Stanovogo schita i himicheskie sostavy porod rannego dokembriya (Yuzhnaya Yakutiya). Novosibirsk: Izd. SO RAN, 2015, p. 459.

14. Smelov A.P., Kravchenko A.A., Berezkin V.I., Dobrecov V.N. Geologiya i geohimiya dokembrijskih bazit-ul'trabazitovyh kompleksov central'noj chasti Aldanskogo schita i nizhnekorovyh ksenolitov // Otechestvennaya geologiya, № 5, 2007, pp. 53–61.

15. Shkodzinskij V.S., Nedosekin YU.D., Surnin A.A. Petrologiya pozdnemezozojskih magmaticheskih porod Vostochnoj Yakutii. Novosibirsk: Nauka, 1992, p. 237.


Review

For citations:


Shkodzinskiy V.S. Genesis of Endogenic Geological Processes According to Data on the Hot Heterogeneous Accretion of the Earth. Arctic and Subarctic Natural Resources. 2018;23(1):7-15. (In Russ.)

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)