Studies of interannual and seasonal variability of balance of carbon and permafrost rock mass in typical tundra ecosystem in Northeast of Russia
https://doi.org/10.31242/2618-9712-2018-26-4-89-96
Abstract
In past decades, tundra ecosystems in the Arctic rapidly changed. Greenhouse gases emission from frozen organic carbon after permafrost thaw have the higher potential to increase effect of climate change in this region. Thawing and degradation of permafrost have been observed in many circumpolar research sites. The analysis of the multiyear complex observations of vegetation and permafrost dynamics in the tundra station «Chokurdakh» of SakhaFluxNet were carried out in this study. Carbon dioxide and methane fluxes in the typical tundra ecosystem in the Indigirka river lowlands in the Northeast of Russia were measured. The net carbon dioxide fluxes were higher compared to other sites, with a net ecosystem gas exchange (NEE) = –92 gCm−2yr−1, which is composed of soil respiration of the ecosystem (Reco) = 141 gCm−2yr−1 and gross primary production of tundra vegetation (GPP) = –232 gCm−2yr−1. This large carbon sink could be explained by the continental climate of the site with low winter soil temperatures (–14°C) that decrease the respiration rates, and short, but relatively warm summers (10.4°C), stimulating high photosynthesis rates. The methane flux was 28 gC-CO2m−2yr−1, so that the greenhouse gas balance was −64 gCCO2m−2yr−1. The methane fluxes were highly sensitive to hydrological conditions and vegetation composition of the site. The importance of the vegetation composition and surface topography for protection of the active layer of permafrost and direction of the carbon flux were investigated. The strong vulnerability of the Arctic tundra even to small-scale changes of vegetation cover was shown. The development of a thaw pond after removing the shrub shifted the plots in our experimental site from a sink of methane into a source. The representative data for the tundra ecosystems, interannual and seasonal variability of the carbon balance are analyzed for the purpose of identification of trends. Nowadays, the tundra ecosystems are weak stock of carbon in comparison with the permafrost forest ecosystems of the Northeast of Russia. According to our long-term eddy-covariance data, the annual carbon sink in the tundra – 0.7 ± 0.2 tCha-1yr-1, in the larch forest is 2.0 ±0.5 tCha-1yr-1. An approximation of the long-term data of eddy-covariance indicates the positive trend of an increase in the accumulation of carbon in the future in the tundra ecosystems owing to the climate change and expansion of an area of growth of tree and shrub species to the North.
About the Authors
Roman Egorovich PetrovRussian Federation
PETROV Roman Egorovich, Junior Researcher, Institute for Biological Problems of Cryolithozone SB RAS, 41 Lenin Ave., Yakutsk, 677980, Russia, http://orcid.org/0000-0002-6877-3902, pre2003@mail.ru
Trofim Khristoforovich Maximov
Russian Federation
MAXIMOV Trofim Khristoforovich, Doctor of Biological Sciences, Head of Laboratory, Institute for Biological Problems of Cryolithozone SB RAS, 41 Lenin Ave., Yakutsk, 677980, Russia, http://orcid.org/0000-0001-7003-5653, tcmax@mail.ru;
Sergey Valer’evich Karsanaev
Russian Federation
KARSANAEV Sergey Valer’evich, Assistant, Institute for Biological Problems of Cryolithozone SB RAS, 41 Lenin Ave., Yakutsk, 677980, Russia, biokars@mail.ru.
References
1. Van der Molen M.K., van Huissteden J., Parmentier Frans-Jan, Petrescu A.M.R., Dolman A.J., Maximov T.C., Kononov A.V., Karsanaev S.V., Suzdalov
2. D.A. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia // Biogeosciences. 2007. V. 4 (6). P. 985–1003.
3. Parmentier F-J.W., van Huissteden J., van der Molen M.K., Schaepman-Strub G., Karsanaev S.A., Maximov T.C., Dolman A.J. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia // Journal of Geophysical Research. 2011. V. 116 (3). P. G03016. DOI: 10.1029/2010JG001637.
4. IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change // Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 2014. 151 p.
5. Maximov T.Kh. Krugovorot ugleroda v listvennichnykh lesakh yakutskogo sektora kriolitozony: dis.… d-ra biol. nauk. Krasnoyarsk, 2007. 303 s.
6. Maximov T.Kh., Dolman A.J., Moors E.J., Ohta T., Sugimoto A., Ivanov B.I. Parametry krugovorotov ugleroda i vody v lesnykh ekosistemakh kriolitozony// Doklady RAN. 2005. T. 404, vyp. 8. S. 684–686.
7. Anisimov O.A., Sherstyukov A.B. Otsenka roli prirodno-klimaticheskikh faktorov v izmeneniyakh kriolitozony Rossii // Kriosfera Zemli. 2016, T. XX, vyp. 2. S. 90–99.
8. Zimov N.S., Zimov S.A., Zimova A.E., Zimova G.M., Chuprynin V.I., Chapin III F.S. Carbon storage in permafrost and soils of the mammoth tundrasteppe biome: Role in the global carbon budget // Geophysical Research Letters. 2009. V. 36. P. L02502. DOI: 10.1029/2008GL036332.
9. Nauta A.L., Heijmans M.P.D., Blok D., Limpens J., Elberling B., Gallagher A, Li B., Petrov R.E., Maximov T.C., van Huissteden J., Berendse F. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source // Nature Climate Change. 2015. V. 5. P. 67–70. DOI: 10.1038/ nclimate2446.
10. Blok D., Heijmans M.M.P.D., SchaepmanStrub G., Kononov A.V., Maximov T.C., Berendse
11. F. Shrub expansion may reduce summer permafrost thaw in Siberian tundra // Global Change Biology. 2010. V. 16. P. 1296–1305. DOI: 10.1111/j.13652486.2009.02110.x.
12. Van Huissteden J., Dolman A.J. Soil carbon in the Arctic and the permafrost carbon feedback // Current Opinion in Environmental Sustainability. 2012. V. 4 (5). P. 545–551. DOI: 10.1016/j.cosust. 2012.09.008.
13. Kwon H.-J., Oechel W.C., Zulueta R.C., Hastings S.J. Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems // Journal of Geophysical Research. 2006. V. 111. P. G03014. DOI: 10.1029/2005JG000036.
14. Iwahana G., Takano S., Petrov R.E., Tei S., Shingubara R., Maximov T.C., Fedorov A.N., Desyatkin A.R., Nikolaev A.N., Desyatkin R.V., Sugimoto A. Geocryological characteristics of the upper permafrost in tundra-forest transition of the Indigirka River Valley, Russia // Polar Science. 2014. V. 8. P. 96–113. DOI: 10.1016/j.polar.2014.01.005.
15. Van Huissteden J., Maximov T.C., Dolman A.J. High methane flux from an Arctic floodplain (Indigirka lowlands, Eastern Siberia) // Journal of Geophysical Research. 2005. V. 110. P. G02002. DOI: 10.1029/2005JG000010.
Review
For citations:
Petrov R.E., Maximov T.Kh., Karsanaev S.V. Studies of interannual and seasonal variability of balance of carbon and permafrost rock mass in typical tundra ecosystem in Northeast of Russia. Arctic and Subarctic Natural Resources. 2018;23(4):89-96. (In Russ.) https://doi.org/10.31242/2618-9712-2018-26-4-89-96