Preview

Arctic and Subarctic Natural Resources

Advanced search

Thermal process control during electrofusion welding of polyethylene pipes at low temperatures

https://doi.org/10.31242/2618-9712-2019-24-4-13

Abstract

The thermal process during electrofusion welding of polyethylene pipes for gas pipelines by connecting couplings with embedded heater is theoretically investigated on the basis of mathematical modeling. The influence of ambient temperature on the dynamics of the temperature field in the electrofusion welding of polyethylene pipes is investigated. The mathematical model of the thermal welding process considers geometric dimensions, thermophysical properties of welded pipes and coupling material, ambient temperature, latent heat of polyethylene phase transition, voltage applied to embedded heater. Results of numerical calculation of thermal welding process at various ambient temperatures are presented. Methodology has been developed for determining the parameters of electrofusion welding of polyethylene pipes, ensuring the flow of thermal process at low ambient temperatures according to the laws inherent in welding at permissible temperatures. It is shown that in order to ensure acceptable dynamics of the temperature field at air temperatures below standard, it is necessary to preheat the coupling and sections of pipes before welding. Preheating is carried out by standard embedded heater. The use of thermal insulation layer is proposed in order to reduce cooling rate of the welded coupling. Recommended technological parameters of electrofusion welding are given for pipes PE 80 GAZ SDR 11 63×5.8 at air temperatures below standard.

About the Authors

Nikolai Pavlovich Starostin
Institute of Oil and Gas Problems SB RAS
Russian Federation

Starostin Nikolai Pavlovich, doctor of technical sciences, professor, head of laboratory, Institute of Oil and Gas Problems SB RAS, 20 Avtodorozhnaya st., Yakutsk, 677980, Russia, https://orcid.org/0000-0002-5686-1817, nikstar56@mail.ru



Olga Aleksandrovna Ammosova
Institute of Oil and Gas Problems SB RAS
Russian Federation

Ammosova Olga Aleksandrovna, Candidate of Technical Sciences, Senior Researcher, Institute of Oil and Gas Problems SB RAS, 20 Avtodorozhnaya st., Yakutsk, 677980, Russia, https://orcid.org/0000-0003-3551-0417, ammosova_o@mail.ru



References

1. Borovskij B.I., Kunskij M.O. Optimizacija sistem gazosnabzhenija gorodskih mikrorajonov // Stroitel’stvo i tehnogennaja bezopasnost’. 2014. No. 50. P. 29–33.

2. Petrishin A. K voprosu ispol’zovanija polijetilena v truboprovodah // Nauka segodnja: zadachi i puti ih reshenija: mat. mezhd. nauchno-prakt. konf. Tjumen’: Izd. OOO “Marker”, 2017. P. 31–32.

3. Kuliczkowska E., Gierczak M. Buckling failure numerical analysis of HDPE pipes used for the trenchless rehabilitation of a reinforced concrete sewer // Engineering Failure Analysis. 2013. Vol. 32. P. 106–112. doi: 10.1016/j.engfailanal.2013.03.007

4. Luo X., Lu S., Shi J., Li X., Zheng J. Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement // Engineering Failure Analysis. 2015. Vol. 48. P. 144–152. doi: 10.1016/j.engfailanal.2014.11.014

5. Gould S.J.F., Davis P., Beale D.J., Marlow D.R. Failure analysis of a PVC sewer pipeline by fractography and materials characterization // Engineering Failure Analysis. 2013. Vol. 34. P. 41–50. doi: 10.1016/j.engfailanal.2013.07.009

6. SP 42-103-2003. Proektirovanie i stroitel’stvo gazoprovodov iz polijetilenovyh trub i rekonstrukcija iznoshennyh gazoprovodov. M.: Polimergaz, FGUP CPP, 2004. 86 p.

7. Chen H., Scavuzzo R.J., Srivatsan T.S. Influence of joining on the fatigue and fracture behavior of high density polyethylene pipe // Journal of Materials Engineering and Performance. 1997. N 6(4). P. 473–480. doi: 10.1007/s11665-997-0119-8

8. Lai H.S., Tun N.N., S.H. Kil, et al. Effect of defects on the burst failure of butt fusion welded polyethylene pipes // Journal of Mechanical Science and Technology. 2016. Vol. 30 (5). P. 1973–1981. doi: 10.1007/s12206-016-0403-3

9. Tariq F., Naz N., Khan M.A. et al. Failure analysis of high density polyethylene butt weld joint // Journal of Failure Analysis and Prevention. 2012. Vol. 12 (2). P. 168–180. doi: 10.1007/s11668-011-9536-y

10. Zakar F., Budinski M. Fracture of a saddle fusion (weld) joint in high density polyethylene (HDPE) pipe // Engineering Failure Analysis. 2017. Vol. 82. P. 481–492. doi: 10.1016/j.engfailanal.2017.03.009

11. Bowman J. A review of the electrofusion joining process for polyethylene pipe systems // Polymer Engineering & Science. 1997. Vol. 37(4). P. 674–691. doi:10.1002/pen.11712

12. Lee B.Y., Kim Y.K., Hwnag W.G., Kim J.S., Lee S.Y. Improvement of butt-welding characteristics of double wall polyethylene pipes // Metals and Materials International. 2012. Vol. 18 (5). P. 851–856. doi: 10.1007/ s12540-012-5016-5

13. Stokes V.K. The vibration and hot-tool welding of polyamides // Polymer Engineering & Science. 2001. Vol. 41 (8). P. 1427–1439. doi: 10.1002/pen.10842

14. Panaskar N., Terkar R. Study of joining different types of polymers by friction stir welding, // Mandal D.K., Syan C.S. (eds) CAD/CAM, Robotics and Factories of the Future. Lecture Notes in Mechanical Engineering. New Delhi: Springer, 2016. P. 731–739. doi: 10.1007/978-81-322-2740-3_70

15. Avdonin N.A. Matematicheskoe opisanie processov kristallizacii. Riga: Zinatne, 1980. 180 p.

16. Vabishhevich P.N. Chislennye metody reshenija zadach so svobodnoj granicej. M.: Izd-vo MGU, 1987. 164 p.

17. Samarskii A.A. The theory of difference schemes. Basel: Marcel Dekker Inc, NY, 2001.

18. Samarskii A.A., Moiseenko B.D. Jekonomichnaja shema skvoznogo scheta dlja mnogomernoj zadachi Stefana // Zhurn. vychislit. matematiki i mat. fiziki. 1965. Vol. 5, N 5. P. 816–827.

19. Fizicheskie velichiny: Spravochnik / A.P. Babichev, N.A. Babushkina, A.M. Bratkovskij i dr.; pod red.

20. I.S. Grigor’eva, E.Z. Mejlthova. M.: Jenergoatomizdat, 1991. 1232 p.

21. Gorilovskij M.I., Kalugina E.V., Ivanov A.N., Satdinova F.K. Issledovanie kristallichnosti i termostabil’nosti v trubah, poluchennyh iz razlichnyh vidov polijetilena // Plasticheskie massy. 2005. N. 4. P. 9–12.

22. Barber P., Atkinson J.R. Some microstructural features of the welds in butt-welded polyethylene and polybutene-1 pipes // Journal of Materials Science. 1972. Vol. 7 (10). P. 1131–1136. doi: 10.1007/ BF00550195

23. Pokharel P., Kim Y., Choi S. Microstructure and mechanical properties of the butt joint in high density polyethylene pipe // International Journal of Polymer Science . 2016. P. 1–13. doi: 10.1155/2016/6483295

24. Ageorges C., Ye L., Hou M. Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review // Composites Part A: Applied Science and Manufacturing. 2001. Vol. 32(6). P. 839–857. doi: 10.1016/S1359-835X(00)00166-4

25. Kajgorodov G.K., Kargin V.Ju. Vlijanie skorosti ohlazhdenija polijetilenovogo svarnogo shva na ego prochnost’ // Truboprovody i jekologija. 2001. N. 2. P. 13–14.

26. Krjukova I.M., Skvirskaja I.I., Ushakov V.Ja., Shmakov B.V. Vlijanie temperatury rasplava na svojstva polijetilena v krupnogabaritnyh izdelijah // Plasticheskie massy. 1998. N. 6. P. 38–39.


Review

For citations:


Starostin N.P., Ammosova O.A. Thermal process control during electrofusion welding of polyethylene pipes at low temperatures. Arctic and Subarctic Natural Resources. 2019;24(4):143-151. (In Russ.) https://doi.org/10.31242/2618-9712-2019-24-4-13

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)