Preview

Arctic and Subarctic Natural Resources

Advanced search

Heterogeneity in kimberlite structure and composition as a reflection of its petrogenesis peculiarities

https://doi.org/10.31242/2618-9712-2023-28-1-9-26

Abstract

New data on the geological structure and petrochemical characteristics of the first kimberlite pipe in the Syuldyukar kimberlite field and its position in the Ygyatta diamond-bearing area are presented. The petrographic identification of the petrochemical varieties of kimberlites in this area was performed for the first time. The compositions of the rockforming and accessory minerals of kimberlites were studied using a modern hardware complex. The results showed that the directed change in the structural and material characteristics of kimberlites from peripheral to central parts in extended vertical bodies of the Syuldyukar tube type is expressed in the replacement of calcium kimberlites by magnesium kimberlites. Mg-kimberlites are characterized by the largest crystals of diamond, garnets, and ilmenites, high concentrations of magnesium, and a number of other components. All of these changes in kimberlites are caused by flow differentiation. This information allowed us to apply the obtained petrological results to the kimberlites of the Syuldyukar tube as search criteria for forecasting and identifying new kimberlite bodies in the Ygyatta diamond-bearing area.

About the Authors

V. A. Minin
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Russian Federation

MININ, Vladimir Alekseevich, Cand. Sci. (Geology and Mineralogy)

Researcher, Researcher ID: M-2810-2018

Novosibirsk



A. V. Tolstov
Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

TOLSTOV, Aleksandr Vasilevich, Dr. Sci (Geology and Mineralogy), Chief Researcher

Yakutsk



M. V. Maltsev
Vilyuiskaya GRE, AK “ALROSA” (PJSC)
Russian Federation

MALTSEV, Mikhail Viktorovich, Cand. Sci. (Geology and Mineralogy), Deputy Chief Geologistirny

Mirny



References

1. Gorev N.I., Gerasimchuk A.V., Protsenko E.V., Tolstov A.V. The tectonic aspects of the structure of the Vilyui-Markha zone, their use in forecasting kimberlite fields. Nauka i obrasovanie. 2011;(3):5–10. (In Russ.)

2. Eremin N.N., Gostishheva N.D., Bobrov A.V., Bendeliani A.A., Burova A.I. The evaluation of the occurrence of Ti4+ ions in the mantle garnets: results of at-omistic modeling. Kristallografiya. 2021;66(1):48–51 (In Russ.)

3. Izox A.E`., Vishnevskij A.V., Kalugin V.M., Oyuunchime` g T. Petrology and geodynamic position of the Ureg Nur Picrite Volcano Plutonic Association (Western Mongolia). Geodynamic evolution of the lithosphere of the Central Asian mobile Belt (from the ocean to the continent), Irkutsk, IZK SB RAS, Materials of the All- Russian Scientific Meeting on Integration Programs of the Department of Earth Sciences of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, 9-14 October, 2007. Irkutsk; 2007:89-91. (In Russ.)

4. Koks K.G., Bell Dzh.D., Pankxerst R.Dzh. Interpretation of igneous rocks. M.: Nedra; 1982. (In Russ.)

5. Korolyuk V.N., Lavrent`ev Yu.G., Usova L.V., Nigmatulina E.N. The accuracy of electron probe analysis of rock-forming minerals on the JXA-8100 microanalyzer. Geol. i geofiz. 2008;49(3):221–225. (In Russ.)

6. Lavrent`ev Yu.G., Usova L.V., Kuzneczova A.I., Letov S.V. X-ray spectral quantum-metric microanalysis of the most important minerals of kimberlites. Geol. i geofiz. 1987;28(5):75–81. (In Russ.)

7. Lavrent`ev Yu.G., Usova L.V., Korolyuk V.N., Logvinova A.M. Electron probe determination of zinc and nickel impurities in chrome spinelides for the purposes of peridotite geothermometry. Geol. i geofiz. 2005;46(7): 741–745. (In Russ.)

8. Mal`tsev M.V., Tolstov A.V., Fomin V.M., Starkova T.S. A new kimberlite field in Yakutia and typomorphic features of its indicator minerals. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya. 2016;(3):86–94. (In Russ.)

9. Minin V.A., Vasilenko V.B., Kuzneczova L.G., Tolstov A.V., Zinchuk N.N. Features of calcium distribution in kimberlites of the Yakut province. Geology and mineral resources of the North-East of Russia: materials of the All-Russian scientific and practical conference, April 2-4, 2013. 2013;II:21–24. (In Russ.)

10. Myuller R., Saksena S. Chemical Petrology. M.: Mir;1980. (In Russ.)

11. Pal`yanov Yu.N., Sokol A.G., Xoxryakov A.F., Kruk A.N. Conditions of diamond crystallization in kimberlite melt according to experimental data. Geologiya i geofizika. 2015;56(1-2):254–272. (In Russ.)

12. Petrochemistry of kimberlites. M.: Nedra;1991. (In Russ.)

13. Sokol A.G., Kruk A.N. Conditions of generation of kimberlite magmas: review of experimental data. Geologiya i geofizika. 2015;56(1-2):316–336. (In Russ.)

14. Tectonics, Geodynamics and Metallogeny of the Sakha Republic (Yakutia). (Ed. Parfenov L.N., Kuzmin M.I.). Moscow: Nauka/Interperiodika; 2001. (In Russ.)

15. Chanturiya V.A., Dvojchenkova G.P., Experimental substantiation of the kinetics formation of the ionic composition of recycled water systems and methods for evaluat ing the effectiveness of their desalamation methods for the conditions of processing of diamond-containing raw materials. Zbagachennya korisnix kopalin: Nauk.-texn. zb. 2012; 48(89):150–159. (In Russ.)

16. Shary`gin I.S., Litasov K.D., Shaczkij A.F., Golovin A.V., Otani E., Poxilenko N.P. Experimental study of the melting of kimberlite tube Udachnaya-Vostochnaya at 3–6.5 hPa and 900–1500 °C. Dokl. RAN. 2013 2012; 48(89):452–457. (In Russ.)

17. Asquith G.B. Flow differentiation in tertiary lamprophyres (camptonites) Sacramento Mountains, Otero County, New Mexico. J. Geol. 1973; 81:643–647.

18. Bebien J., Gagny Cl., Importance of flow differentiation in magmatic evolution: an example from an ophiolitic sheeted complex. J. Geol. 1979;87:579–582.

19. Bhattacharji S. Mechanics of flow differentiation in ultramafic and mafic sills. J. Geol. 1967;75:101–112.

20. Bhattacharji S., Nehru C.E. Igneous differentiation models for the origin of Mount Johnson, a zoned monteregion intrusion, Quebec, Canada. 24th Intern. Geol. Cong. 1972;(14):3–17.

21. Bhattacharji S., Smith C.S. Flowage differentiation. Science. 1964;45:150–153.

22. Brouxel M. Geochemical consequences of flow differentiation in a multiple injection dike (Trinity ophiolite, California). Lithos. 1991;26:245–252.

23. Cas R.A.F., Porritt L., Pittari A., Hayman P. A practical guide to terminology for kimberlite facies: a systematic progression from descriptive to genetic, including a pocket guide. Lithos. 2009;112 (Suppl 1): 183–190.

24. Clement C.R., Skinner E.M.W. A textural-genetic classification of kimberlites. 1985;88:403–409.

25. Coe N., Le Roex A.P., Gurney J.J., Pearson D.G., Nowell G.M. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: Constraints from whole rock geochemistry. Contrib Mineral Petrol. 2008;156:627–652

26. Coetzee M.S., Bate M.D., Elsenbroek J.H. Flow differentiation: - An explanation for the origin and distribution of plagioclase glomerocrysts in the Annas Rust dolerite sill, Vredefort Dome. S. Afr. J. Geol. 1995;98(3): 276–286.

27. Edgar A.D., Charbonneau H.E. Melting experiments on a SiO2-poor, CaO-rich aphanitic kimberlite from 5-10 GPa and their bearing on sources of kimberlite magmas. Amer. Miner. 1993;78:132–142.

28. Gibb F.G.F. Flow differentiation in the xenolithic ultrabasic dykes of the Cuilins and Strathaird peninsula, Isle of Skye, Scotland. J. Petrol. 1968;9(3):411–443.

29. Komar P.D. Mechanical interactions of phenocrysts and flow differentiation of igneous dikes and sills. Geol. Soc. Am. Bull. 1972;83:973–988.

30. Kjarsgaard B.A. Kimberlite Pipe Models: Significance for Exploration. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. B. Milkereit. 2007:667–677.

31. Mangan M.T., Marsh B.D., Froelich A.J., Gottfried D. Emplacement and differentiation of the York Haven diabase sheet, Pennsylvania. J. Petrol. 1993;34(6):102.

32. Mitchell R.H. Experimental studies at 5-12 GPa of the Ondermatjie hypabyssal kimberlite. Lithos. 2004; 76:551–564.

33. Richardson S.H. Chemical variation induced by flow differentiation in an extensive Karroo dolerite sheet, southern Namibia. Geochim. Cosmochim. Acta. 1979;43: 1433–1441.

34. Ross M.E. Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts. Geol. Soc. Am. Bull. 1986;97: 232–240.

35. Scott Smith B.H., Nowicki T.E., Russell J.K., Webb K.J., Mitchell R.H., Hetman C.M., Harder M., Skinner E.M.W., Robey Jv.A. Kimberlite Terminology and Classification. Proceedings of 10th International Kimberlite Conference, Volume 2, Special Issue of the Journal of the Geological Society of India. 2013:1–17.

36. Sobolev N.V., Tomilenko A.A., Kuz,min D.V., Logvinova A.M., Bul,bak T.A., Fedorova E.N., Nikolenko E.I., Reutskij V.N., Sobolev A.V., Batanova V.G., Grakhanov S.A., Kostrovitskij S.I., Yakovlev D.A., Anastasenko G.F., Tolstov A.V. Prospects of search for diamondiferous Kimberlites in the Northeastern Siberian Platform. Russian Geology and Geophysics. 2018;(10):1365–1379.


Review

For citations:


Minin V.A., Tolstov A.V., Maltsev M.V. Heterogeneity in kimberlite structure and composition as a reflection of its petrogenesis peculiarities. Arctic and Subarctic Natural Resources. 2023;28(1):9-26. (In Russ.) https://doi.org/10.31242/2618-9712-2023-28-1-9-26

Views: 280


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)