Preview

Arctic and Subarctic Natural Resources

Advanced search

Mathematical modeling of sustainable development in North Russia

https://doi.org/10.31242/2618-9712-2023-28-4-641-656

Abstract

The main mathematical models used to address issues related to global climate change and human impact on the natural systems of the northern regions are discussed. These models were employed to analyze the effects of emergency situations and develop regional decision-making systems for prevention and mitigation. Moreover, these models can be utilized to establish automated networks for monitoring carbon flows, forecasting climate change, identifying sources of pollution, and describing the processes by which pollution spreads in the atmosphere, soil, or water bodies. These efforts aim to address the environmental damage and mitigate the negative impacts of human activity on the natural world.

About the Authors

S. G. Pyatkov
Academy of Sciences of the Republic of Sakha (Yakutia); Yugra University
Russian Federation

PYATKOV, Sergey Grigorievich, Dr. Sci. (Phys. and Math.), Professor

ResearcherID: H-4458-2013

Scopus Author ID: 6507419969

RISC AuthorID: 8413

Yakutsk

Khanty-Mansiysk



L. N. Vladimirov
Academy of Sciences of the Republic of Sakha (Yakutia)
Russian Federation

VLADIMIROV, Leonid Nikolaevich, Corresponding Member of the Russian Academy of Sciences, Academician of the Academy of Sciences of the Republic of Sakha (Yakutia)

Scopus Author ID: 57004575000

RISC AuthorID: 289067

Yakutsk



S. V. Popov
Academy of Sciences of the Republic of Sakha (Yakutia); Ammosov North-Eastern Federal University
Russian Federation

POPOV, Sergey Vyacheslavovich, Academician of the Academy of Sciences of the Republic of Sakha (Yakutia), Dr.  Sci.  (Phys.  and.  Math.),  Professor

ResearcherID: A-6567-2017

Scopus Author ID: 57193984618

RISC AuthorID: 113155

Yakutsk



References

1. Glagolev M.V., Sabrekov A.F. Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling. Mathematical Biology and Bioinformatics. 2012;7(1):81–101.

2. Belolipetsky V.M., Belolipetsky P.V. Estimation of carbon flux between atmosphere and terrestrial ecosystem using vertical distribution of co2 concentrations measured on tall-tower. Vestnik NSU. Series: Information Technologies. 2011;9(1):75–81. (In Russ.)

3. Glagolev M.V., Fillipov I.V. Measurements of green-house gas fluxes in wetland ecosystems . Khanty-Mansiysk: Ugra State University; 2014.

4. Borodulin A.I., Desyatkov B.D., Makhov G.A., Sarmanaev S.R. Determination of the emission of swamp methane from the measured values of its concentration in the surface layer of the atmosphere. Meteorologiya i Gidrologiya . 1997;(1):66–74. (In Russ.)

5. Pyatkov S., Shilenkov D. Existence and uniqueness theorems in the inverse problem of recovering surface fluxes from pointwise measurements. Mathematics. 2022;10(9):1549.

6. Kazakov A.L., Lazriev G.L. On the parameterization of the surface layer of the atmosphere and the active layer of soil. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics . 1978;14(3): 257–265. (In Russ.)

7. Badia A.E., Ha-Duong T. On an inverse source problem for the heat equation. Application to a pollution detection problem. Journal of Inverse and Ill-Posed Problems . 2002;10(6):585–599.

8. Stepanenko V.M., Machulskaya E.E., Glagolev M.V., Lykosov V.N. Numerical modeling of methane emission from lakes in the permafrost zone. Izvestiya, Atmospheric and Oceanic Physics. 2011;47(2):275–288. (In Russ.)

9. Belolipetskii M., Genova S.N. One-dimensional model of methane emission in permafrost zones. Reshetnev Readings. 2018;1:558–559. (In Russ.)

10. Verzhbitskii M.A., Pyatkov S.G. On some inverse problems of determining boundary modes. Mathematical notes of NEFU. 2016;23(2):3–16. (In Russ.)

11. Marchuk G.I. Mathematical models in environmental problems. In: Studies in mathematics and its applications, V. 16. Amsterdam: Elsevier Science Publishers; 1986. P. 216

12. Ling L., Takeuchi T. Point sources identification problems for heat equations. Communications in Computational Physics . 2009;5(5):897–913.

13. Popov S.V., Nikolaev N.N. On the problem of recovering the coefficients in a one-dimensional third order equation. AIP Conference Proceedings . 2017;1907: 030005. https://doi.org/10.1063/1.5012627

14. Ivanchov M. Inverse problems for equations of parabolic type . Lviv: WNTL Publishers, 2003. P. 240.

15. Pyatkov S.G., Rothko V.V. Inverse problems for some quasilinear parabolic systems with point over determination conditions. Matematicheskie Trudy. 2019;22(1):178– 204. (In Russ.) https://doi.org/10.33048/mattrudy.2019.22.107

16. Penenko A.V., Rachmetullina S.G. Algorithms for atmospheric emission source localization based on the automated ecological monitoring system data. Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]. 2013;10:35–54. (In Russ.)

17. Pyatkov S.G., Neustroeva L.V. On some asymptotic representations of solutions to elliptic equations and their applications. Complex Variables and Elliptic Equations. 2021;66:964–987. https://doi.org/10.1080/17476933.2020.1801656

18. Murguia-Flores F., Arndt S., Ganesan A., et al. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development. 2018; 11:2009–2032. https://doi.org/10.5194/gmd-11-2009-2018

19. Hes E.M.A., Niu R., van Dam A.A. A simulation model for nitrogen cycling in natural rooted papyrus wet-lands in East Africa. Wetland Ecology Management . 2014;22:157–176. https://doi.org/10.1007/s11273-014-9336-8

20. Wu Y., Blodau C. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands. Geoscientific Model Development . 2013;6:1173–1207.

21. Motenko R.G., Cheverev V.G., Zhuravlev I.I. The influence of oil pollution on the thermophysical properties of frozen dispersed rocks. In: Geophysical studies of the cryolithozone. Moscow; 2000, pp.132–138. (In Russ)

22. Permyakov P.P. Identification of parameters of a mathematical model of heat and moisture transfer in frozen soils . Novosibirsk: Nauka; 1989. (In Russ)

23. Permyakov P.P., Vinokurova T.A., Popov G.G. Heat and moisture transfer in the soil base of pipelines with aufeis. Vestnik of NEFU. 2020;76(2):32–41. (In Russ.) https://doi.org/10.25587/SVFU.2020.76.61507

24. Johansson A.E., Gustavsson A.-M., Oquist M.G., Svensson B.H. Methane emissions from a constructed wetland treating wastewater seasonal and spatial distribution and dependence on edaphic factors. Water Research . 2004;38(18):3960–3970. https://doi.org/10.1016/j.watres.2004.07.008

25. Huntul M.J., Hussein M.S. Simultaneous identification of thermal conductivity and heat source in the heat equation. Iraqi Journal of Science . 2021;62(6):1968– 1978. https://doi.org/10.24996/ijs.2021.62.6.22

26. Iskenderov A.D., Akhundov A.Ya. Inverse problem for a linear system of parabolic equations. Doklady Mathematics. 2009;79(1):73–75. https://doi.org/10.1134/S1064562409010219

27. Pyatkov S.G.E. On some classes of inverse problems for parabolic equations. Journal of Inverse and Ill-Posed Problems . 2011;18(8):917–934. https://doi.org/10.1515/JIIP.2011.011

28. Alifanov O.M., Budnik S.A., Nenarokomov A.V., et al. Parametric identification of a mathematical model of heat transfer in carbon–carbon (C–C) materials for aeronautical application. Russian Aeronautics. 2016;59(4): 548–553. https://doi.org/10.3103/S1068799816040176

29. Zemenkov Yu.D., Dudin S.M., Nalobin N.V. Algorithm design of frozen ground thermal field definition round pipelines. Territorija Neftegaz – Oil and gas territory. 2015;(9):112–117. (In Russ)

30. Bazarov A.A., Danilushkin A.I. Modeling of processes of heat exchange between a gas pipeline and an environment. Vestn. Samar. Vestnik of Samara State Technical University (Technical Sciences Series). 2015;46(2): 66–75. (In Russ.)


Review

For citations:


Pyatkov S.G., Vladimirov L.N., Popov S.V. Mathematical modeling of sustainable development in North Russia. Arctic and Subarctic Natural Resources. 2023;28(4):641-656. (In Russ.) https://doi.org/10.31242/2618-9712-2023-28-4-641-656

Views: 182


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)