Preview

Arctic and Subarctic Natural Resources

Advanced search

Dendroclimatic studies of Larix cajanderi Mayr. in the Omoloy River Basin

https://doi.org/10.31242/2618-9712-2023-28-4-584-594

Abstract

This study presents the results of research on the climatic signal of radial growth of Siberian larch (Larix cajanderi Mayr.) in the Omoloy River Basin, (north-eastYakutia). Tree-ring width chronologies were obtained from three sites  located in the valley complexes of subarctic tundra and forest-tundra ecotone, with chronologies spanning up to 498 years. Comparative analysis of radial growth dynamics and its statistical parameters indicated similar variability patterns within the study region. Dendroclimatic analysis revealed that the primary limiting factor determining the magnitude of radial growth in Siberianlarch is the air temperature during the first half of the growing season. Increasing temperatures have led to an increased role of precipitation and changes in the strength of growth-temperature correlations, especially in northern sites.This study highlights the potential for dendroclimatic and dendroecological researchin northern Yakutia.

About the Authors

A. I. Kolmogorov
Ammosov North-Eastern Federal University; Siberian Federal University
Russian Federation

KOLMOGOROV, Alexey Ivanovich, Researcher, Institute of Natural Sciences; Junior Researcher

Scopus Author ID:1032714

Yakutsk

Krasnoyarsk



St. Kruse
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
Germany

KRUSE, Stefan, Dr. Sci (Biol.), Researcher

Potsdam



A. N. Nikolaev
Ammosov North-Eastern Federal University
Russian Federation

NIKOLAEV, Anatoliy Nikolaevich, Dr. Sci (Biol.), Rector

Scopus Author ID: 155715

Yakutsk



A. V. Kirdyanov
Siberian Federal University; Suckachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences
Russian Federation

KIRDYANOV, Alexandr Viktorovich, Senior Researcher;  Dr. Sci (Biol.), Leading Researcher

Krasnoyarsk



L. A. Pestryakova
Ammosov North-Eastern Federal University
Russian Federation

PESTRYAKOVA, Ludmila Agafevna, Dr. Sci (Geogr.), Chief Researcher

Scopus Author ID:616182

Yakutsk



References

1. Field C.B., Barros V., Dokken D., et al. Climate change 2014 – Impact, Adaptation, and Vulnerability. Part B: Regional aspects. Cambridge: Cambridge University Press;2014.696p.

2. Lembrechts J.J., et al. Globalmapsof soil temperature. Global change biology. 2022;(28):3110–3144. https://doi.org/10.1111/gcb.16060

3. Isaev A.P., TimofeyevP.A. General characteristics of Boreal forests. The far north: Plant biodiversity and Ecology of Yakutia.Dordrecht:Springer; 2010;164–168p. https://doi.org/10.1007/978-90-481-3774-9

4. Afanasyeva K.S.,BaykovA.A.,et al. Key to the higher plants of Yakutia. Novosibirsk: Nauka: KMK; 2020. 896p. (InRuss.)

5. Vaganov E.A., Shiyatov S.G., Mazepa V.S. Dendroclimatic studies in the Ural-Siberian Subarctic. Novosibirsk:Nauka; 1996.246p. (InRuss.)

6. Shiyatov S.G. Ratesof change in theuppertreeline ecotone in the Polar Ural Mountains. PAGES News . 2003;11(1):8–10. https://doi.org/10.22498/pages.11.1.8

7. Esper J., Schweingruber F.H. Large-scale tree-line changesrecorded in Siberia.Geophysical Research Letters . 2004;31(6):L06202 https://doi.org/10.1029/2003GL019178

8. Hellmann L., et al. Diverse growth trends and climate responses across Eurasia’s boreal forest. Environmental Research Letters . 2016;(11):074021. https://doi.org/10.1088/1748-9326/11/7/074021

9. Sidorova O.V., Siegwolf R.T., Saurer M., et al. Spatial patternsof climaticchangesin theEurasiannorth reflected in Siberianlarch tree-ring parametersandstable isotopes. Global Change Biology. 2010;(16):1003–1018. https://doi.org/10.1111/j.1365-2486.2009.02008.x

10. Naurzbaev M.M.,VaganovE.A.,Sidorova O.V. Variability of surface air temperature in northern Eurasia accordingto millennial tree-ring chronologies. Earth’s cryosphere. 2003;7(2):84091. (InRuss.)

11. Büntgen U.,ArseneaultD.,BoucherÉ.,et al. Recognising bias in Common Era temperature reconstructions. Dendrochronologia.2022;(74):125982.https://doi.org/10.1016/j.dendro.2022.125982

12. Shiyatov S.G., Vaganov E.A., KirdyanovA.V., et al. Methods of dendrochronology. Part 1. Fundamentals of dendrochronology. Collection and receipt of tree-ring information .Krasnoyarsk:KrasGU;2000.80 p. (InRuss.)

13. Cook E.R., PetersK. Thesmoothingspline: Anew approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-ring Bulletin . 1981; (41):45–53.

14. Holmes R.L. Program COFECHA: Version 3. Tucson:Universityof Arizona;1992.

15. R Development Core Team. R: A language and environment for statistical computing.Vienna,Austria:R Foundation for Statistical Computing; 2011. https://R-project.org

16. Bunn A.G. A dendrochronology program library in R (dplR). Dendrochronologia. 2008;26(2):115–124. https://doi.org/10.1016/j.dendro.2008.01.002

17. Wigley T.M.L.,BriffaK.R.,JonesP.D. On the average value of correlated time series with applications in dendroclimatology andhydrometeorology.Journal of Climate & Applied Meteorology.1984;(23):201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

18. Shiyatov S.G. Dendrochronology of the upper forest limit in the Urals. Moscow:Nauka; 1986.136p. (InRuss.)

19. Cook E.R., Kairiukstis L.A., et al. Methods of Dendrochronology. Application in Environmental Sciences. Dordrecht, Boston, London: Kluwer Acad. Publ.; 1996.394p.

20. Zang C., Biondi F. Treeclim: an R packages for the numerical calibration of proxyclimate relationship. Ecography. 2015;(38):431–436.https://doi.org/10.1111/ecog.01335

21. Specialized arrays for climate research[http://aisori-m.meteo.ru]; 2023. URL: http://aisori-m.meteo.ru/waisori/select.xhtml

22. Fritts H.C. TreeRings and Climate. London, New York,SanFrancisco:Acad.Press;1976.576p.

23. Büntgen U.,KrusicP.J., PiermatteiA.,et al. Limited capacity of tree growth to mitigate the global green-house effect under predicted warming. Nature Communications .2019;(10):2171.https://doi.org/10.1038/s41467-019-10174-4

24. Grigoriev A.A., Moiseev P.A., Nagimov Z.Ya. The influence of climate change onthedynamics of theupper limit of tree vegetation in the mountains of the Subpolar Urals (on the Sablya ridge). Forests of Russia and economy in them. 2010;2(36):10–19.(InRuss.)

25. Timofeev A.S., Vyukhin S.O., Grigoriev A.A., Moiseev P.A. Structure and dynamics of tree and shrub vegetation at the upper limit of their growth on the Putoran plateau. Forests of Russia and economy in them. 2021; 1(76):23–28.(InRuss.)

26. Kirdyanov A.V., Hagedorn F., Knorre A.A., et al. 20th century treeline advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas . 2012;41(1):56–67. https://doi.org/10.1111/j.1502-3885.2011.00214.x.

27. Kirdyanov A.V.,ProkushkinA.S.,Tabakova M.A. Tree-ring growth of Gmelinlarch undercontrastinglocal conditions in the north of Central Siberia. Dendrochronologia .2013;31(2):114–119.

28. Vaganov E.A.,Kirdyanov A.V. Growth,tree-ring structure of conifers and reconstruction of climate change. In: Fo rest ecosystems of the Yenisei transect . Pleshikov F.I. (ed.).Novosibirsk;2002;181–196. (InRuss.)

29. Knorre A.A., KirdyanovA.V., Vaganov E.A. Climaticallyinducedinterannual variabilityin aboveground production in forest-tundra and northern taiga of central Siberia. Oecologia .2006;147:86–95.https://doi.org/10.1007/s00442-005-0248-4

30. Vaganov E.A., KirdyanovA.V. Denrochronology of larch trees growingon Siberianpermafrost.Permafrost Ecosystems.2010;209:347–363.https://doi.org/10.1007/978/-1-4020-9693-8_18

31. Vaganov E.A., Hughes M.K., Kirdyanov A.V., et al. Influence of snowfallandmelttiming on tree growth in subarctic Eurasia.Nature .1999;400(6740):149–151.

32. KirdyanovA., Hughes H., Vaganov E., et al. The importance of early summer temperature and date of snow melt for tree growth in Siberian Subarctic. Trees. 2003;17:61–69.

33. Rinne K.T.,Saurer M.,KirdyanovA.V.,et al. Examining the response of needle carbohydrates from Siberian larch trees to climate usingcompound-specific δ13C and concentration analyses. Plant, Cell & Environment. 2015;38(11):2340–2352.https://doi.org/10.1111/pce.12554

34. Rinne K.T.,Saurer M.,KirdyanovA.V.,et al. The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia. Tree Physiology . 2015;35(11):119201205. https://doi.org/10.1093/treephys/tpv096

35. Andresen C.G.,Lawrence D.M.,WilsonC.J., et al. Soil moisture and hydrology projections of the permafrost region – a model intercomparison. Cryosphere. 2020;(14):445–459. https://doi.org/10.5194/tc-14-445-2020

36. Kajimoto T., Matsuura Y., Osawa A., et al. Root system development of Larix gmelinii trees affected by microscale conditions of permafrost soils in central Siberia. Plant and Soil . 2003;(255):281–292. https://doi.org/10.1023/A:1026175718177

37. Bryukhanova M.V., KirdyanovA.V., ProkushkinA.S., Silkin P.P. Features of xylogenesis of Larix gmelinii (Rupr.) Rupr. in the conditions of the permafrost zone of Central Siberia. Ecology. 2013;(5):323–329. (In Russ.). https://doi.org/10.7868/S0367059713050041

38. Kirdyanov A.V., Vaganov E.A., Hughes M.K. Separating the climatic signal from tree-ring width and maximum latewood density records. Trees. 2007;21(1): 37044. https://doi.org/10.1007/s00468-006-0094-y

39. Sidorova O.V., Saurer M., Myglan V.S., et al. A multi-proxy approach for revealing recent climatic changesin theRussianAltai.Climate Dynamics.2012;(38): 175–188. https://doi.org/10.1007/s00382-010-0989-6


Review

For citations:


Kolmogorov A.I., Kruse S., Nikolaev A.N., Kirdyanov A.V., Pestryakova L.A. Dendroclimatic studies of Larix cajanderi Mayr. in the Omoloy River Basin. Arctic and Subarctic Natural Resources. 2023;28(4):584-594. (In Russ.) https://doi.org/10.31242/2618-9712-2023-28-4-584-594

Views: 290


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)