Development of high-strength polymer materials based on polytetrafluoroethylene
https://doi.org/10.31242/2618-9712-2020-25-2-13
Abstract
The results of studies into the physicomechanical properties of polymeric materials based on polytetrafluoroethylene and its composites with carbon fibres of the UVIS-AK-P brand are presented. The technology of these composites involves the plastic deformation of polymer materials by compression, accompanied by the change of thickness at a constant width of the workpiece. It was found that the use of this technology allows not only to increase the tensile strength of PTFE by a factor of 2.7–3.3 with a compression ratio of 3–4.3, but also to reduce its creep deformation by a factor of 22–29, compared to the original polymer. The proposed technology is also tested on a PTFE composite containing a carbon fiber material of the UVIS-AK-P brand in the amount of 5 mass %. It is shown that in this case, the strength of the composite increases by a factor of 3, and the creep deformation decreases by a factor of 8.3, compared to the original composite, which was not subjected to plastic deformation. The proposed technology for producing fluoroplast composites allows expanding the scope of their application, and the developed materials can be used in various friction points, especially for loading schemes with high tensile loads.
About the Authors
M. A. MarkovaRussian Federation
MARKOVA Marfa Alekseevna, engineer
20 Avtodorozhnaya str., Yakutsk, 677000
P. N. Petrova
Russian Federation
PETROVA Pavlina Nikolaevna, candidate of technical sciences, associate professor, leading researcher
20 Avtodorozhnaya st., Yakutsk, 677000
A. L. Fedorov
Russian Federation
FEDOROV Andrew Leonidovich, candidate of technical sciences, senior researcher
20 Avtodorozhnaya str., Yakutsk, 677000
S. N. Popov
Russian Federation
POPOV Savva Nikolaevich, doctor of technical sciences, associate professor, leading researcher
20 Avtodorozhnaya st., Yakutsk, 677000
References
1. Shasha Feng, Zhaoxiang Zhong, Yong Wang, Weihong Xing, Drioli E. Progress and perspectives in PTFE membrane: Preparation, modification, and applications // Journal of Membrane Science. 2018. V. 549. P. 332–349. doi/10.1016/j.memsci.2017.12.032
2. Bocklenberg L., Winkler K., Mark P., Rybarz S. Low Friction Sliding Planes of Greased PTFE for High Contact Pressures // Open Journal of Civil Engineering. 2016. Vol. 6, No. 2. P. 105–116. DOI: 10.4236/ojce.2016.62010
3. Voropaev V.V. Innovacii i resursosberezhenie pri proizvodstve vysokoprochnyh iznosostojkih karbonosoderzhashchih kompozitov na osnove ftoroplastovyh matric // Novye gorizonty. Sbornik materialov III Belorussko-Kitajskogo molodezhnogo innovacionnogo foruma. Minsk: BNTU, 2016. P. 78–79.
4. Boldyrev V.V., Ohlopkova A.A., Popov S.N., Petrova P.N. i dr. Fundamental’nye osnovy mekhanicheskoj aktivnosti, mekhanosinteza i mekhanohimicheskih tekhnologij. Novosibirsk: Izd-vo SO RAN, 2009. 343 p.
5. Mashkov Yu.K., Ovchar Z.N., Bajbarackaya M.Yu., Mamaev O.A. Polimernye kompozicionnye materialy v tribotekhnike. M.: OOO Nedra-Biznescentr, 2004. 262 p.
6. Sokolova M.D., Davydova M.L., Shadrinov N.V. Processing to increase the structural activity of xeolite in polymer-elastomer composites // Int. Polymer Sci. And Technol. 2011. V. 38, No. 5. P. 25–29.
7. Le Thi Mi Hiep, Panin S.V., Kornienko L.A., Aleksenko V.O., Ivanova L.R. Mekhanicheskie i tribotekhnicheskie svojstva kompozitov na osnove polifenilensul’fida, armirovannyh razlichnymi mikrovoloknami // Perspektivnye materialy konstrukcionnogo i medicinskogo naznacheniya: sbornik trudov Mezhdunarodnoj nauchnotekhnicheskoj molodezhnoj konferencii. Tomsk: Izd-vo TPU, 2018. P. 243–245.
8. Marycheva A.N., Guzeva T.A., P’e P.M. et al. Reinforcing Fillers for Polymer Composites Based on Organic Unwoven Materials. Polym. // Sci. Ser. 2019. V. D 12. P. 170–173. https://doi.org/10.1134/S1995421219020138
9. Al-ghamdi A.M.S., Mark J.E. Zeolites as reinforcing fillers in an elastomer // Polymer Bulletin. 1988. V. 20. P. 537–542. https://doi.org/10.1007/BF00263669
10. Ly E.B., Lette M.J., Diallo A.K. et al. Effect of Reinforcing Fillers and Fibres Treatment on Morphological and Mechanical Properties of Typha-Phenolic Resin Composites // Fibers Polym. 2019. V. 20. P. 1046–1053. https://doi.org/10.1007/s12221-019-1087-y
11. Ovdak O.V., Kalinin Y.E., Kudrin A.M. et al. The Influence of Content of Reinforcing Filler on Mechanical Properties of Carbon-Glass Fiber Reinforced Plastics in Matrix T-107. Inorg. Mater. Appl. Res. 2018. V. 9. P. 108–113. https://doi.org/10.1134/S2075113318010215
12. Sergeev V.P., Chuvashov Y.N., Galushchak O.V. et al. Basalt fibers — A reinforcing filler for composites // Powder Metall Met. Ceram. 1995. V. 33. P. 555–557. https://doi.org/10.1007/BF00559548
13. Beckford S., Cai J., Fleming R.A. et al. The Effects of Graphite Filler on the Tribological Properties of Polydopamine/PTFE Coatings // Tribol. Lett. 2016. V. 64. 42 p. https://doi.org/10.1007/s11249-016-0777-5
14. Voznyak Yu.V. Vliyanie marshruta deformirovaniya na svojstva politetraftoretilena posle ravnokanal’noj uglovoj ekstruzii // Fizika I tekhnika vysokih davlenij. 2012. V. 22. No. 2. P. 118–124.
15. Patent RF No. 2527782 Process izgotovleniya uprochnennyh prutkovyh izdelij iz amorfno-kristallicheskih polimerov / Beloshenko V.A., Voznyak A.V., Voznyak Yu.V.
16. Cherednichenko V.S. Tekhnologiya konstrukcionnyh materialov. 2-e izd., pererab. M.: Omega-L, 2006. 752 p.
17. Beloshenko V.A., Bejgel’zimer Ya.E., Varyuhin V.N. Tverdofaznaya ekstruziya polimerov. Kiev: Naukova dumka, 2008. 207 p.
18. Segal V.M. Equal-Channel Angular Extrusion: From Macromechanics to Structure Formation // Mater. Sci. Eng. 1999. V. A271. P. 322–333.
Review
For citations:
Markova M.A., Petrova P.N., Fedorov A.L., Popov S.N. Development of high-strength polymer materials based on polytetrafluoroethylene. Arctic and Subarctic Natural Resources. 2020;25(2):157-165. (In Russ.) https://doi.org/10.31242/2618-9712-2020-25-2-13