Comparative characterization of forests using the interpretation of ultra-high resolution images
https://doi.org/10.31242/2618-9712-2020-25-2-10
Abstract
For the purpose of monitoring the state of forest ecosystems, it is most effective to use the capabilities of remote sensing methods. Fragments of 0.819 km2 (scale 1: 3200) with the dominance of Scots pine (Pinus sylvestris L.) and Gmelin larch (Larix gmelinii Rupr.) were identified on DigitalGlobe multispectral satellite images of the territory of the Olekminsky State Nature Reserve. Then, the polygons were saved at four levels of detail – 4.16.64.256 with scales of 1: 1600.1: 800, 1: 400, 1: 200. When decoding, an uncontrolled classification of the fragment and polygons was carried out using the ISODATA (Iterative Self-Organizing Data Analysis Technigue) method for 2,4,10 classes. According to the results of classification into 2 classes, the relationship between the forest cover index and the number of trees marked on the landfills is shown. The distribution curves for forest cover index values were constructed for polygons at level 4 of detail. The nature of the curves is close to the normal distribution. According to the classification results for grades 4 and 10, statistical processing was carried out with the calculation of the indicators of the difference and similarity of the polygons – the dispersion of the general aggregate and the Fisher test (F-test). The most similar pairs of polygons at different levels of detail are highlighted. The results of changes in the dispersion and the F-test at different levels of detail are considered.
About the Authors
Yu. F. RozhkovRussian Federation
ROZHKOV Yuri Filippovich, candidate of chemical sciences, deputy director for scientific research
678100, Olekminsk, 6 Filatov str.
M. Yu. Kondakova
Russian Federation
KONDAKOVA Maria Yuryevna, candidate of biological sciences, senior researcher
344090, Rostov-on-Don, 1983 Stachki Ave.
References
1. Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody / red. A.S. Isaeva. M.: Nauka, 2008. 453 p.
2. Isaev A.S., Knyazeva S.V., Puzachenko M.Yu. et al. Ispol’zovanie sputnikovykh dannykh dlya monitoringa bioraznoobraziya lesov // Issledovanie Zemli iz kosmosa. 2009. No. 2. P. 1–12.
3. Tolkach I.V. Metody osnovnykh taksatsionnodeshifrovochnykh pokazatelei na tsifrovykh snimkakh// Trudy BGTU. 2012. No. 1. P. 63–65.
4. Zharko V.O., Bartalev S.A., Egorov V.A. Issledovanie vozmozhnostei otsenki zapasov drevesiny v lesakh Primorskogo kraya po dannym sputnikovoi sistemy Proba-V // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. V. 15, No. 1. P. 157–168.
5. Khovratovich T. S., Bartalev S.A., Kashnitskii A.V. Metod detektirovaniya izmenenii lesov na osnove podpiksel’noi otsenki proektivnogo pokrytiya drevesnogo pologa po raznovremennym sputnikovym izobrazheniyam // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. Vol. 16, No. 4. P. 102–110.
6. Denisova A.Yu., Kavelenova L.M., Korchikov E.S. et al. Prostranstvennaya klassifikatsiya preobladayushchikh drevesnykh porod na territorii Samarskoi oblasti po dannym Sentinel-2 i taksatsii lesa // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. Vol. 16, No. 4. P. 86–101.
7. Fomin V.V., Zalesov S.V., Magasumova A.G. Metodiki otsenki gustoty podrosta i drevostoev pri zarastanii sel’skokhozyaistvennykh zemel’ drevesnoi rastitel’nost’yu s ispol’zovaniem kosmicheskikh snimkov vysokogo prostranstvennogo razresheniya // Agrarnyi vestnik Urala. 2015. No. 1. P. 125–129.
8. Danilin I.M., Medvedev E.M., Abe N.I. et al. Vysokie tekhnologii XXI veka dlya aerokosmicheskogo monitoringa i taksatsii lesov. Zadachi issledovanii i perspektivy ispol’zovaniya// Lesnaya taksatsiya i lesoustroistvo. 2005. Vol. 1(34). P. 28–30.
9. Isaev A.S., Sukhovol’skii V.G., Khleboros R.G. et al. Modelirovanie lesooobrazovatel’nogo protsessa: Fenomenologicheskii podkhod // Lesovedenie. 2005. No. 1. P. 3–11.
10. Kozoderov V.V., Kondranin T.V. Metody otsenki sostoyaniya pochvenno-rastitel’nogo pokrova po dannym opticheskikh sistem distantsionnogo aerokosmicheskogo zondirovaniya. M.: MFTI. 2008. 222 p.
11. Metodika lesnogo stereoskopicheskogo deshifrirovaniya aero- i kosmicheskikh snimkov. SPb.: Lesproekt. 2015. 23 p.
12. Ozhich O.S. Izmeritel’noe deshifrirovanie chistykh sosnovykh drevostoev na tsifrovykh aero- i kosmicheskikh snimkakh: Avtoref. diss. ... kand. sel’skokhozyaistvennykh nauk. Minsk, 2017. 24 p.
13. Malysheva N.V. Deshifrirovanie drevesnoi rastitel’nosti na sverkhdetal’nykh izobrazheniyakh [Elektronnyi resurs]: metodicheskoe posobie: uchebnoe elektronnoe izdanie; M.: FGBOU VPO MGUL, 2014. 40 p.
14. Terekhin E. A. Sezonnaya dinamika proektivnogo pokrytiya rastitel’nosti agroekosistem na osnove spektral’noi sputnikovoi informatsii // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. Vol. 16, No. 4. P. 111–123
15. Zhirin V.M., Knyazeva S.V., Eidlina S.P. Ekologodinamicheskoe issledovanie lesoobrazovatel’nogo protsessa po kosmicheskim snimkam // Lesovedenie. 2013. No. 5. P. 76–85.
16. Shovengerdt R.A. Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazhenii. M.: Tekhnosfera, 2010. 560 p.
17. Kochub E.V., Topaz A.A. Analiz metodov obrabotki materialov distantsionnogo zondirovaniya Zemli // Vestnik Polotskogo gosudarstvennogo universiteta. Ser. F. Stroitel’stvo. Prikladnye nauki. Geodeziya. 2012. No. 16. P. 132–140.
18. Shumakov F.T., Tolstokhat’ko V.A., Malets A.Yu. Klassifikatsiya kosmicheskikh snimkov s ispol’zovaniem metodov klasternogo analiza // Vostochno-Evropeiskii zhurnal peredovykh tekhnologii. 2011. V. 3/4 (51). P. 58–62.
19. Rozhkov Yu.F., Kondakova M.Yu. Otsenka vozmozhnosti ispol’zovaniya pokazatelya simmetrii raspredeleniya pikselei v monitoringe sostoyaniya lesov pri deshifrirovanii kosmicheskikh snimkov srednego i vysokogo razresheniya // Nature Conservation Research. Zapovednaya nauka. 2016. V. 1(1). P. 98–107. DOI: 10.24189/ncr.2016.008
20. Rozhkov Yu.F., Kondakova M.Yu. Monitoring sostoyaniya lesov s ispol’zovaniem klasternogo analiza pri deshifrirovanii kosmicheskikh snimkov srednego i vysokogo razresheniya // Nauka i obrazovanie. 2016. No. 3. P.95–101.
21. Rozhkov Yu.F. Monitoring sostoyaniya lesnykh ekosistem s ispol’zovaniem kosmicheskikh snimkov vysokogo i sverkhvysokogo razresheniya // Vestnik SVFU. Ser. Nauki o Zemle. 2019. No. 4(16). P. 71–81. DOI:10.25587/SVFU.2020.16.49741
22. Rozhkov Yu.F., Kondakova M.Yu. Otsenka dinamiki vosstanovleniya lesov posle pozharov v Olekminskom zapovednike (Rossiya) po kosmicheskim snimkam Landsat// Nature Conservation Research. Zapovednaya nauka. 2019. Vol. 4(1). P. 1–10. DOI:10.24189/ncr.2019.014
23. Rozhkov Yu.F., Kondakova M.Yu. Otsenka strukturnykh kharakteristik lesnykh ekosistem s ispol’zovaniem deshifrirovaniya kosmicheskikh snimkov vysokogo i sverkhvysokogo razreshenii // Vestnik SVFU. 2018. No. 1 (63). P. 38–51.DOI:10.25587/SVFU.2018.63.10539
24. Mandel’brot B.B. Fraktal’naya geometriya prirody. M.: Institut komp’yuternykh issledovanii, 2002. 656 p.
25. Mandelbrot B.B. The fractal geometry of trees and other natural phenomena // Lecture Notes in Biomathematics. 1978. Vol. 23. P. 235–249.
Review
For citations:
Rozhkov Yu.F., Kondakova M.Yu. Comparative characterization of forests using the interpretation of ultra-high resolution images. Arctic and Subarctic Natural Resources. 2020;25(2):125-136. (In Russ.) https://doi.org/10.31242/2618-9712-2020-25-2-10