Preview

Arctic and Subarctic Natural Resources

Advanced search

The content of flavonoids in Atriplex patula L. biomass during mechanical activation treatment

https://doi.org/10.31242/2618-9712-2020-25-3-8

Abstract

The effect of grinding of the aboveground biomass of Atriplex patula L. to particle size of 1.0–1.5 mm (coarse grinding), 0.8–0.9 mm (average grinding) and 0.5–0.6 mm (fine grinding) with further processing in a mechanical mill on the total content of flavonoids, amounts of rutin, dihydroquercetin and luteolin-7-o-glucoside in vegetable flour was studied. The total content of flavonoids in the biomass was determined by means of spectrophotometry, the content of rutin, dihydroquercetin and luteolin-7-O-glucoside was determined by means of HPLC. It was found that the yield of the total amount of flavonoids increased by a factor of 1.2 when crushed to a particle size of 0.5–0.6 mm, with respect to the studied grinding versions. Mechanical activation (MA) for one minute led to a decrease in the total amount of flavonoids in all grinding versions. It was found that grinding to a particle size of 0.8–0.9 mm (average grinding) reduces the content of rutin in plant flour by a factor of 1.6–2.0 with respect to the control. MA of coarse flour increased the yield of rutin, with the exception of the two-minute MA treatment. It was found that grinding to the particle size of 0.5-0.6 mm leads to an increase in the amount of extracted dihydroquercetin; with MA treatment of the resulting flour, dihydroquercetin content does not change, except for one-minute МA, when there was a 1.8 times decrease in dihydroquercetin content. It is shown that the grinding of raw materials to the size of 1.0-1.5 and 0.5–0.6 mm causes an increase in the content of luteolin-7-O-glucoside in plant flour. The MA treatment of plant flour led to a decrease in the amount of luteolin-7-O-glucoside under these grinding conditions. The exception was MA treatment of average-milled flour, where the content of dihydroquercetin increased by 33.3 % (with respect to the control in the group). The most optimal mode of MA was established, with a rotor speed of 1500 rpm in air, with pre-MA grinding of A. patula biomass to a particle size of 0.5–0.6 mm, which does not affect the change in the amount of the studied physiologically active substances in the raw material.

About the Author

I. V. Voronov
Institute for Biological Problems of Cryolithozone SB RAS
Russian Federation

VORONOV Ivan Vasilievich, candidate of biological sciences, senior researcher

41 Lenina pr., Yakutsk 677980

Researcher ID:S-8071-2018



References

1. Biryukov V.V. Osnovy promyshlennoj biotekhnologii. M., 2004. 296 p.

2. Rodionova N.S., Popov E.S., Kustov V.Yu. et al. Impact of mechanical activation on the prebiotic properties of plant biological resources // International Journal of Civil Engineering and Technology. 2019. No. 10(01). Р. 1718–1730.

3. Lomovsky O.I., Belykh V.D. Mekhanohimicheskaya ekstrakciya vodorastvorimyh komponentov iz rastitel’nogo lipidsoderzhashchego syr’ya // Periodical collection of scientific papers «Processing of dispersed materials and media». 2000, No. 10. P. 71–75.

4. Chuev V.P., Kameneva O.D., Chikalo Т.М. Use of mechanochemical activation to modify properties of bioactive compounds // Siberian Chemical Journal. 1991. No. 5. Р. 156–157.

5. Vedernikov N., Karlivans V., Roze I., Rolle A. Mechanochemical destruction of plant raw materials polysaccharides in presence of small amounts of concentrated sulfuric acid // Siberian Chemical Journal. 1991. No. 5. Р. 67–72.

6. Ilyina I.A., Zemskova Z.G., Mironova O.P. Problemy intensifikacii processa proizvodstva modificirovannyh pektinov na osnove metodov mekhanohimii // Nauka Kubani. 2007. No. 2. P. 61–67

7. Suntsova A.P., Meteleva E.S., Dushkin A.V. Mekhanohimicheskoe poluchenie i issledovanie vodorastvorimyh kompozicij na osnove flavonoidov – genisteina, digidrokvercitina, rutina // Fundamentalnye Issledovanija. 2014. No. 11.P. 2174–2179.

8. Kamarludin S., Jainal S., Azizan M. et al. Mechanical pretreatment of lignocellulosic biomass for biofuel production // Applied Mechanics and Materials. 2014. No. 625. Р. 838–841. DOI: https://doi.org/10.4028/ www.scientific.net/AMM.625.838

9. Lomovsky O., Bychkov A., Lomovsky I. Mechanical pretreatment. biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier. 2016. Р. 23-55. DOI: https://doi.org/10.1016/B978-0-12-802323-5.00002-5.

10. Savelyeva A.B., Yudina N.V. Mekhanohimicheskie prevrashcheniya kislorodsoderzhashchih soedinenij lipidov torfa // Chimija rastitelnonogo syriya. 2013. No. 4. P. 201–206. DOI: 10.14258/jcprm.1304201

11. Zhang W., Liang M., Lu C. Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling // Cellulose. 2007. No. 14(5). Р. 447–456.

12. Bychkov A., Podgorbunskikh E., Bychkova E., Lomovsky O. Current achievements in the mechanically pretreated conversion of plant biomass // Biotechnol Bioeng. 2019. Vol. 116(5). Р.1231–1244. doi: 10.1002/bit.26925.

13. Vtjurina L.M., Khvoshchev S.S. Synthesis and characterization of MWW zeolites // Studies in Surface Science and Catalysis. 2002. Vol. 144. P. 671–675. https://doi.org/10.1016/S0167-2991(02)80195-1

14. Chizhevskaya S.V., Chekmarev A.M., Klimenko O.M. et al. Intensifikaciya na osnove mekhanicheskoj aktivacii processov razlozheniya redkometal’nogo syr’ya piro-, gidro- i sol’vometallurgicheskimi metodami. // Nauchnyie osnovy chimii i technologii pererabotki komplexnogo syrija i sinteza na ego osnove functsionalnykh materialov. Sat scientific tr Apatity, 2008. Part 1, vol. 1. P. 198–200.

15. Khrenkova T.M. Mekhanohimicheskaya aktivaciya uglej. M., 1993.176 p.

16. Boldyrev V.V. Eksperimental’nye metody v mekhanohimii tverdyh neorganicheskih veshchestv. Novosibirsk, 1983. 64 p.

17. Avvakumov E.G. Mekhanicheskie metody aktivacii himicheskih processov. Novosibirsk, 1986. 305 p.

18. Ivanova V.P. Dvudol’nye rasteniya okrestnostej g. Yakutska (opredelitel’). Yakutsk, 1990.160 p.

19. Konspekt flory Sibiri: Sosudistye rasteniya / sost. L.I. Malyshev, G.A. Peshkova, K.S. Bikes and others; pod red. K.S. Bikes. Novosibirsk, 2005. 362 p.

20. Timofeev N.P. Proteinovaya cennost’ novyh kul’tur v usloviyah Severa (Teoreticheskoe obosnovanie i prakticheskaya realizaciya) // Netraditsionnyie prirodnyie resursy, innovatsionnyie technologii i produkty. Vol. 6. M., RANS, 2002. P. 115–139.

21. Pashinsky V.G. Tomsk: NII pharmakologii, TSC SB RAMS, 1990. 145 p.

22. Voronov I.V. Aminokislotnyj sostav Atriplex patula L. i Amaranthus retroflexus L. (Amarantháceae), proizrastayushchih v Central’noj Yakutii // Chimija rastitelnogo syrija. 2018. No. 3. P. 69–74. DOI: 10.14258/jcprm.2018033610

23. Boronenko M.P., Lavrikov V.V., Seregin A.E. et al. Kontrol’ energii izmel’cheniya i mekhanoaktivacii planetarnoj mel’nicy AGO-3 // Vestnik Yugorskogo gosudarstvennogo universiteta. 2016. No. 2 (41). P. 7–16

24. Rogozhin V.V. Metody biohimicheskih issledovanij. Yakutsk, 1999. 113 p.

25. Shein A.A., Prokopyev I.A., Filippova G.V., Zhuravskaya A.N. Vliyanie tekhnogennogo zagryazneniya na soderzhanie fotosinteticheskih pigmentov i flavonoidov u Matricaria Chamomila (Asteraceae) // Rastitelnyie resursy. 2014, Vol. 50 (2). P. 235–241.


Review

For citations:


Voronov I.V. The content of flavonoids in Atriplex patula L. biomass during mechanical activation treatment. Arctic and Subarctic Natural Resources. 2020;25(3):89-96. (In Russ.) https://doi.org/10.31242/2618-9712-2020-25-3-8

Views: 118


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)