Effect of particle size and concentration of fluorine-containing polymer on the properties of frost-resistant elastomer based on propylene oxide rubber
https://doi.org/10.31242/2618-9712-2020-25-1-11
Abstract
The article considers problems of operation of elastomers and elastomeric products in cold climates. There are also studies the behavior of elastomeric sealing materials during their operation in extreme climatic conditions and suggestions of the ways of new frost-resistant elastomers development. Based on these ways, elastomeric composites based on mixtures of propylene oxide rubber (SKPO) and fluorine-containing polymers were obtained. SKPO has a unique frost resistance (TG = –74 °C). Following standard methods of rubber technology, polymer composites based on SKPO and polytetrafluoroethylene (PTFE) or ultrafine polytetrafluoroethylene (UPTFE), which differ in the preparation method and degree of dispersion, were studied. These fluoropolymers selected for rubber modification have a low coefficient of friction, resistance in most known liquids, and heat resistance. Using electron microscopy, we studied the structure of elastomeric composites and the features of their phase morphology, depending on the nature of the fluoropolymer used. We revealed the effect of particle size of the dispersed phase and the content of the fluorine-containing component on the phase morphology and properties of elastomeric composites. It was shown that as the content of PTFE (UPTFE) in the mixture increases, the wear and oil resistance of rubbers increases as well, but frost resistance decreases. The addition of UPTFE powder, which has smaller particle sizes, was preferable to obtain elastomeric composites with a high level of low-temperature characteristics and wear and oil resistance. As a result, we obtained frost-resistant elastomeric composites with a balanced set of properties. The developed compositions were patented and recommended for use.
Keywords
About the Authors
N. N. PetrovaRussian Federation
PETROVA Nataliya Nikolaevna, doctor of chemistry, associate professor, professor, head of the chemical department, Institute of Natural Sciences
58 Belinsky st., Yakutsk,677000
V. V. Portnyagina
Russian Federation
PORTNYAGINA Viсtoria Vitalievna, candidate of technical sciences, associate professor, Mining Institute
58 Belinsky st., Yakutsk, 677000
References
1. Cherskiy I.N., Popov S.N., Goldshtrah I.Z. Proektirovanie i raschet morozostoykih podvizhnyih uplotneniy. Novosibirsk: Nauka. Sib. otd-nie RAN, 1992. 123 p.
2. Mark E.J., Erman B., Eirich F.R. (Eds.) Science and technology of rubber. Elsevier Academic Press: 3rd ed. Burlington: Elsevier, 2005.
3. Bolshoy spravochnik rezinschika / pod red. S.V. Reznichenko i Yu.L. Morozova / Ch. 1, 2. M.: OOO «Izdatelskiy tsentr «Tehinform» Mezhd. akademii informatizatsii», 2012.
4. Kurlyand S.K., Buhina M.D. Morozostoykost elastomerov. M.: Himiya, 1989. 176 p.
5. Petrova N.N., Popova A.F., Fedotova E.S. Issledovanie vliyaniya nizkih temperatur i uglevodorodnyih sred na svoystva rezin na osnove propilenoksidnogo i butadien-nitrilnogo kauchukov // Kauchuk i rezina. 2002. No. 3. P. 6–10.
6. Muhin V.V., Petrova N.N. Klimaticheskoe starenie rezin na osnove epihlorgidrinovogo kauchuka v nefti pri nizkih temperaturah // Vestnik Severo-Vostochnogo federalnogo universiteta im. M.K. Ammosova. 2017. No. 6 (62). P. 59–66. DOI: 10.25587/SVFU.2017.62.8448
7. Govorova O.A., Vishnitskiy A.S., Chubarova G.V., Morozov Yu.L. Razrabotka atmosferostoykih rezin s uluchshennyimi nizkotemperaturnyimi i adgezionnyimi svoystvami // Kauchuk i rezina. 1999. No. 2. P. 18–20.
8. Hvostik G.M., Vasilev V.A., Ventseslavskaya K.K., Iskakov B.A., Kutuzov P.I., Bazhenov Yu.P., Nasyirov I. Sh., Andreeva V.Yu., Morozov Yu.L., Govorova O.A. Toplivostoykie epihlorgidrinovyie i propilenoksidnyie kauchuki dlya himicheskoy i avtomobilnoy promyishlennosti. // Tez. dokl. perv. vseross. konf. po kauchuku i rezine 26–28 fevralya 2002 g. M., 2002. P. 135.
9. Petrova N.N. Osobennosti sozdaniya rezin uplotnitelnogo naznacheniya dlya ekspluatatsii v usloviyah holodnogo klimata // Kauchuk i rezina. 2005. No. 6. P. 2–6.
10. Kuleznev V.N. Smesi polimerov. M.: Himiya, 1980. 302 p.
11. Miroshnikov Yu.P. Zakonomernosti smesheniya i formirovaniya fazovoy strukturyi v geterogennyih polimernyih smesyah: Avtoref. dis... dokt. him. nauk. M., 1996. 45 p.
12. Menson Dzh., Sperling L. Polimernyie smesi i kompozityi / Perevod s angl. pod red. Godovskogo Yu.K. M.: Himiya, 1979. 439 p.
13. Ohkubo Y., Shibahara M., Ishihara K., Nagatani A., Honda K., Endo K., Yamamura K. Effect of rubber compounding agent on adhesion strength between rubber and heat-assisted plasma-treated polytetrafluoroethylene (PTFE) // Journal of Adhesion. 2019. No. 95 (3). P. 242–257. DOI:10.1080/00218464.2018.1428095.
14. Dadbin S., Kashcooli Y., Frounchi M. Mechanical and surface properties of e-beam irradiated polytetrafluoroethylene-silicone rubber composites // Polymers and Polymer Composites. 2010. No. 18 (6). P. 329–336. DOI: 10.1177/096739111001800605.
15. Sohail Khan M., Franke R., Lehmann D., Heinrich G. Physical and tribological properties of PTFE micropowder-filled EPDM rubber //Tribology International. 2009. No. 42 (6). P. 890–896. DOI:10.1016/j.triboint.2008.12.014.
16. Franke R., Lehmann D., Kunze K. Tribological behaviour of new chemically bonded PTFE polyamide compounds // Wear, 2007. No. 262 (3-4). P. 242–252. DOI:10.1016/j.wear.2006.05.001.
17. Polonik V.D., Prokopchuk N.R., Shashok Zh.S. Tehnicheskie svoystva elastomernyih kompozitsiy na osnove butadien-nitrilnogo kauchuka, modifitsirovannyih politetraftoretilenom // Trudyi BGTU. Himiya, tehnologiya organicheskih veschestv, biotehnologiya, 2012. No. 4. P. 102–105.
18. Petrova N.N., Portnyagina V.V. Rubber compounds based on blends of propylene oxide rubber and polytetrafluoroethylene // International Polymer Science and Technology, 2008. V. 35/ No. 4. P. 47–50.
19. Petrova N.N., Portnyagina V.V. Rubber compounds based on blends of propylene oxide rubber and ultrafine polytetrafluoroethylene // International Polymer Science and Technology. 2018. V. 42. I. 8. P. T 29-T 32. DOI:10.1177/0307174X1504200806.
20. PortnyaginaV.V., Petrova N.N., MukhinV.V., Ee Le Shim, Jin-Ho Cho. Preparation and Improved Physical Characteristics of Propylene Oxide Rubber Composites // Molecules. 2018. No. 23 (9). P. 2150. DOI: 10.3390/molecules23092150.
21. Khan M.S., Heinrich G. PTFE-Based Rubber Composites for Tribological Applications // Heinrich G. (Ed.) Advanced Rubber Composites. Advances in Polymer Science. Vol. 239. Berlin; Heidelberg: Springer, 2010. P. 249–310. DOI: 10.1007/12_2010_98.
22. Hopmann C., Dering J.P., Cöllen G. Property modification of EPDM rubber compounds using PTFE micro powder // Gummi Fasern Kunststoffe. No. 10. 2012. P.648–652. DOI:10.1177/0307174X1304000301.
23. Zhao G., Shi L., Fu J., Feng X., Ding P., Zhuo J. Preparation and properties of polytetrafluorethylene filled ethylene–propylene–diene monomer composites // J. Appl. Polym. Sci. 2012. No. 123. P. 3734–3740. DOI:10.1002/app.34406.
24. Park E. Processibility and mechanical properties of micronized polytetrafluoroethylene reinforced silicone rubber composites // J. Appl. Polym. Sci. 2008. No. 107. Р. 372–381. DOI: 10.1002/app.27065.
25. Polonik V.D., Prokopchuk N.R., Shashok ZH.S. Svoystva elastomernykh kompozitsiy s ftorsoderzhashchey dobavkoy // Trudy BGTU. Khimiya i tekhnologiya organicheskikh veshchestv, materialov i izdeliy, 2013. No. 4. P. 141–144.
26. Cao C., Liu L., Li Q., Chen P., Qian Q., Chen Q. Recycling and application of wasted polytetrafluoroethylene via high-energy ball milling technology for nitrile rubber composites preparation // Polym Eng Sci. No. 56. 2016. Р. 643–649. DOI:10.1002/pen.24290.
27. Pol D. Mezhfaznye dobavki, sposobstvuyushchie sovmestimosti v smesyah polimerov // Polimernye smesi; pod red. Pola D. i N’yumena S., per. s angl. M.: Mir, 1981. V. 2. P. 39–70.
28. Peng H. Synthesis and Application of FluorineContaining Polymers with Low Surface Energy //Polymer Reviews. No. 59 (4). 2019. P. 739–757. DOI: 10.1080/15583724.2019.1636390.
29. Khan M.S., Franke R., Lehmann D., Heinrich G. Physical and tribological properties of PTFE micropowder-filled EPDM rubber // Tribology International. No. 42 (6). 2009. P. 890–896. DOI: 10.1016/j.triboint.2008.12.014.
30. Dobkowski Z., Zielecka M. Thermal analysis of the poly(siloxane)-poly(tetrafluoroethylene) coating system // Journal of Thermal Analysis and Calorimetry. No. 68 (1). 2002. P. 147–158.
31. Ohlopkova A.A., Adrianova O.A., Popov S.N. Modifikaciya polimerov ul’tradispersnymi polimerami. YAkutsk: YAF Izd-va SO RAN, 2003. 224 p.
32. Park E. Processibility and mechanical properties of micronized polytetrafluoroethylene reinforced silicone rubber composites // J. Appl. Polym. Sci. No. 107. 2008. Р. 372–381. DOI:10.1002/app.27065.
33. Kiryuhin D.P., Kim I.P., Buznik V.M. Radiacionno-himicheskie metody sozdaniya zashchitnyh pokrytij i kompozitnyh materialov s ispol’zovaniem ftormonomerov. Himiya vysokih energij // Radiacionnaya himiya. 2008. V. 42, No. 5. P. 393–400.
34. Buznik V.M., Fomin V.M., Alhimov A.P. Metallopolimernye nanokompozity. Novosibirsk: Izdatel’stvo SO RAN, 2005. 260 p.
35. Lomovskij O.I., Politov A.A., Dudina D.V., Korchagin M.A., Buznik V.M. Mekhanohimicheskie metody polucheniya kompozitnyh materialov metallkeramika – politetraftoretilen // Himiya v interesah ustojchivogo razvitiya. 2004. No. 12. P. 619–626.
36. Buznik V.M. Novye nanorazmernye i mikrorazmernye ob”ekty na osnove politetraftoretilena // Rossijskie nanotekhnologii. 2009. V. 4, No. 11-12. P. 35–41.
37. Ignat’eva L.N., Cvetnikov A.K., Gorbenko O.N., Kajdalova T.A., Buznik V.M. Spektroskopicheskoe issledovanie produktov sublimacii ul’tradispersnogo politetraftoretilena // ZHurnal strukturnoj himii. 2004. V. 45. No. 5. P. 830–836.
38. Buznik V.M., Kuryavyj V.G. Morfologiya i stroenie mikronnyh i nanorazmernyh poroshkov politetraftoretilena, poluchennyh gazofaznym metodom // Ros. him. zh. (ZH. Ros. him. ob-va im. D.I. Mendeleeva). 2008. V. III. No. 3. P. 131.
39. Morozov A.V., Petrova N.N. Method of evaluating the coefficient of friction of frost-resistant sealing rubbers // J. Frict. Wear. 2016. No. 37. Р. 124–128. DOI: 10.3103/S1068366616020124.
40. Ostrer S.G. Ftorpolimery v himicheskoj promyshlennosti. P., 2019. 400 p.
41. Chelishchev N.F., Berenshtejn B.G., Volodin V.F. Ceolity – novyj tip mineral’nogo syr’ya. M.: Nedra, 1987. 176 p.
42. Portnyagina V.V. Razrabotka uplotnitel’nyh rezin na osnove morozostojkih kauchukov i ul’tradispersnyh napolnitelej dlya tekhniki severa: Avtoref. dis... kand. tekhn. nauk. M., 2010, 24 p.
43. Patent RF No. 2294341, opubl. 27.02.2007.
44. Morozov A.V., Murav’eva T.I., Petrova N.N., Portnyagina V.V., Ammosova V.N., Zagorskij D.L. Issledovanie tribotekhnicheskih i adgezionnyh svojstv morozostojkih rezin // Kauchuk i rezina. 2015 .No. 6. P. 24–28.
Review
For citations:
Petrova N.N., Portnyagina V.V. Effect of particle size and concentration of fluorine-containing polymer on the properties of frost-resistant elastomer based on propylene oxide rubber. Arctic and Subarctic Natural Resources. 2020;25(1):101-117. (In Russ.) https://doi.org/10.31242/2618-9712-2020-25-1-11