Preview

Arctic and Subarctic Natural Resources

Advanced search

Quantitative model and petrology of acid magmas, genesis of ore-bearing hydrotherms

https://doi.org/10.31242/2618-9712-2020-25-1-1

Abstract

Magma models calculated for the first time show that under the deep conditions the fluid phase is absent in them as a consequence of its dissolution in the melt under high pressure. This points to the absence of fluid torrents in the regions of magma formation. Under these conditions, the content of solid phases in magmas increases sharply, which contradicts the hypothesis concerning magma formation as a result of partial melting and points to its origin as a result of friction and decompression remelt of the rocks of identical composition. These rocks originated from the fractionation of the global magma ocean at the early stage of the Earth’s evolution. Relatively low-temperature magmas at the late stage of lifting were solidified as a result of decompression release of the fluid phase in them. The high pressure of this phase, conserved due to solidification, caused disintegration of the upper parts of magmatic columns and explains the nature of volcanic explosions. With pressure rise, the fluid phase appears at later stages of magma crystallization, when the residual melts accumulate ores and volatile components carrying them. This explains the genesis of ore-bearing hydrotherms.

About the Author

V. S. Shkodzinskiy
Diamond and Precious Metal Geology Institute, SB RAS
Russian Federation

SHKODZINSKIY Vladimir Stepanovich, dr. sci. in geology and mineralogy, leading researcher

677980, Yakutsk, Lenin ave., 39



References

1. Luth W.S., Jahns R.N., Tuttle O.F. The granite system at pressure of 4 to 10 kilobars // J. Geophys. Res. 1964. V. 69. P. 759–773.

2. Merril R.B., Robertson J.K., Wyllie P.J. Melting relations in the system NaAlSi3O8 – KAlSi3O8 – SiO2 – H2O to 20 kbars compared with results for other feldspar – quartz – H2O and rock – H2O system // J. Geol. 1974. V. 78. P. 558–569.

3. Huang W.L., Wyllie P.J. Melting relations in the system NaAlSi3O8 – KAlSi3O8 – SiO2 to 35 kilobars, dry and with excess water // J. Geol. 1975. V. 83. P. 737–748.

4. Rjabchikov I.D. Termodinamika fluidnoi fazy granitoidnyh magm. М.: Nauka, 1975. 215 p.

5. Shkodzinskiy V.S. Fasovaja evoluzia magm i petrogenesis. М.: Nauka, 1985. 232 p.

6. Mysen B.O., Eggler D.H., Seitz M.G., Holloway J.R. Carbon dioxide in silicate melts and crystalls. 1. Solubility measurements // Amer. J. Sci. 1976. V. 276, N 4. P. 455–479.

7. Shkodzinskiy V.S. Problemy fisiko-himicheskoi petrologii i genesisa migmatitov (na primere Allanskogo Shchita). Novosibirsk: Nauka, 1976. 224 p.

8. Kadik A.A., Frenkel M.Ja. Dekompressia porod kory i mantii kak mechanism obrasovanija magm. М.: Nauка, 1982. 120 p.

9. Green D.Х. Sostav basaltovyh magm kak kriteriy usloviy ih vosniknovenija pri vulkanisme // Petrologia isvergennyh I metamorficheskih porod dna okeana. М.: Мir, 1973. P. 242–261.

10. Arndt N.T. The separation of magmas from partially molten peridotite // Carnegy Inst. Wash. Yarb. 1977. V. 76. P. 424–428.

11. Ringwood A.E. Proishogdenie Zemli i Luny. М.: Nedra, 1982. 294 p.

12. Schmidt O.Ju. Proishogdenie Zemli i planet. М.: Izd-vo АN SSSR, 1962. 132 p.

13. Galimov E.M. Obrasovanie Luny i Zemli is obshchego superplanetnogo gaso-pylevogo sgushchenija // Geohimija. 2011. N 6. P. 563–580.

14. Rusmaikina T.V. Protoplanetnyi disk: ot idei zahvata k teorii proishogdenia. // Fisika Zemli. 1991. N 8. S. 5–14.

15. Shkodzinskiy V.S. Globalnaja petrologia po sovremennym dannym o gorjachei heterohennoi akkrezii Zemly. Yakutsk: Isd. SVFU, 2018. 244 p.

16. Shkodzinskiy V.S., Nedosekin Ju.D., Surnin A.A. Petrologija pozdnemesosoiskih magmticheskih porod Vastochnoi Jakutii. Novosibirsk: Nauка, 1992. 237 p.

17. Shkodzinskiy V.S. Petrologia litosfery i kimberlitov (model gorjachei geterogennoi akkrezii Zemly). Jakutsk: Izd. SVFU, 2014. 452 p.

18. Lorenz V., Kurzlaukis S. Kimberlite pipes: growth models and resulting implications for diamond exploration // 8th International Kimberlite Conference. Long Abstract. Victoria, Canada, 2003.

19. Skinner E.M., Marsh J.S. Kimberlite eruption processes // 8th International Kimberlite Conference. Long Abstract. Victoria, Canada, 2003.

20. Eichelberg J.C., Hayes D.V. Magmatic model for mount St. Helens blast of may 18, 1980 // J. Geophys. Res. 1982. V. B87, N 9. P. 37–49.

21. Shkodzinskiy V.S. Problemy globalnoi petrologii. Yakutsk: Sahapoligrafisdat, 2003. 240 p.

22. Antipin V.S., Kovalenko V.I., Rjabchikov I.D. Koeffizienty raspredelenija redkih elementov v magmaticheskih porodah. М.: Nauка, 1984. 254 p.

23. Gljuk D.S. Eksperimentalnye issledovanija po geologii zolota v magmaticheskom i gidrotermalnom prozessah // Uslovija obrasovanija rudnyh mestorogdenii. М.: Nauка, 1986. P. 706–710.

24. Tauson L.V. Geohimicheskie tipy i potenzialnaja rudonosnost granitoidov. М.: Nauка, 1977. 279 p.

25. Smirnov S.S. Izbrannyie trudy. М.: Naukа, 1965. 248 p.

26. Flerov B.L. Olovorydnye mestorogdenija JanoKolymskoi skladchatoi oblasti. M.: Nauka, 1976. 283 p.


Review

For citations:


Shkodzinskiy V.S. Quantitative model and petrology of acid magmas, genesis of ore-bearing hydrotherms. Arctic and Subarctic Natural Resources. 2020;25(1):7-19. (In Russ.) https://doi.org/10.31242/2618-9712-2020-25-1-1

Views: 128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)