Preview

Природные ресурсы Арктики и Субарктики

Расширенный поиск

Mineralization in the Kildyam mafic volcanic rocks – a magmatic contribution to ore-forming fluids (Central Yakutia, Russia)

https://doi.org/10.31242/2618-9712-2021-26-2-3

Аннотация

Mineral assemblages and processes occurring in olivine-pyroxenites, andesite, and dacite volcanic settings of the Kildyam Late Jurassic complex in Central Yakutia are investigated. The methods involved in the study include detailed sensing and mapping using ESRI ArcGis.Imagery Service, field observations, minerals and glass identification, recognition of vesicle composition. The results obtained in the study support the igneous vapor transport of ore elements in the andesitic system and imply preconcentration of iron, copper and ± gold and silver during lava solidification into magnetite rich lava flows. The major components of the Kildyam andesite alloys are Fe, Cu, Sn, Pb, Zn, and Ag. Alloy element maps show a covariance of Cu±(Zn, Sn, Ni, Fe), and Ag concentrations varied independently. This research confirmed that tholeitic trend of iron-rich olivine-pyroxenites evolve towards two immiscible liquids: (1) magnetite lava, and (2) melilitite matrix. Further evolution leads to the separation of native iron and the transition of lavas to the calc-alkaline trend. Petrographic and microprobe studies confirmed the liquid immiscibility in silicate melts during crystallization. Immiscible liquids are preserved as globules of one glass in another in andesites and as melted inclusions of native iron in the matrix, clinopyroxene and plagioclase phenocrysts. The vesiclehosted alloys and sulfides provide significant new data on metal transportation and precipitation from hightemperature magmatic vapors. During syneruptive vapor phase exsolution, volatile metals (Cu–Zn, Fe–Al– Cu, Ni–Fe–Cu–Sn) and Ag–Cu sulfides contribute to the formation of economic concentrations.

Об авторе

А. V. Kostin
Diamond and Precious Metal Geology Institute, SB RAS
Россия

KOSTIN Aleksey Valentinovich, Dr. Sci. (Geology and Mineralogy), chief reseacher

39 Lenina pr., Yakutsk 677000



Список литературы

1. Hattori K.H., Keith J.D. Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA // Miner. Depos. Springer, 2001. Vol. 36, No. 8. P. 799–806.

2. Meeker K.A. et al. Emission of elemental gold particles from Mount Erebus, Ross Island, Antarctica // Geophys. Res. Lett. Wiley Online Library, 1991. Vol. 18, No. 8. P. 1405–1408.

3. Hinkley T.K. et al. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes // Earth Planet. Sci. Lett. Elsevier, 1999. Vol. 170, No. 3. P. 315–325.

4. Allard P. et al. Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano // Geophys. Res. Lett. Wiley Online Library, 2000. Vol. 27, No. 8. P. 1207–1210.

5. Hunter E.A.O. et al. Vapor Transport and Deposition of Cu-Sn-Co-Ag Alloys in Vesicles in Mafic Volcanic Rocks // Econ. Geol. Society of Economic Geologists, 2020. Vol. 115, No. 2. P. 279–301.

6. Li P., Boudreau A.E. Vapor transport of silver and gold in basaltic lava flows // Geology. Geological Society of America, 2019. Vol. 47, No. 9. P. 877–880.

7. Symonds R.B., Reed M.H. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: Calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mt. St. Helens // Am. J. Sci. States). 1993. Vol. 293, No. 8.

8. Sharygin V.V et al. Copper-containing magnesioferrite in vesicular trachyandesite in a lava tube from the 2012–2013 eruption of the Tolbachik volcano, Kamchatka, Russia // Minerals. Multidisciplinary Digital Publishing Institute, 2018. Vol. 8, No. 11. P. 514.

9. Kamenetsky V.S. et al. High-temperature gold-copper extraction with chloride flux in lava tubes of Tolba-chik volcano (Kamchatka) // Terra Nov. Wiley Online Library, 2019. Vol. 31, No. 6. P. 511–517.

10. Ovalle J.T. et al. Formation of massive iron deposits linked to explosive volcanic eruptions // Sci. Rep. 2018. Vol. 8, No. 1. P. 14855.

11. Kostin A.V. Immiscible silica- and iron-rich melts at the Kildyam volcano complex (central Yakutia, Russia) // Arct. Subarct. Nat. Resour. 2020. Vol. 25, No. 2. P. 25–44.

12. Afanasiev V. P., Pokhilenko N. P., Grinenko V. S., Kostin A. V., Malkovets V. G. O.O.B. Kimberlitic magmatism in the south-western flank of the Vilui basin // Dokl. Earth Sci. 2020. Vol. 2, No. 490. P. 5–9.

13. Smelov A.P., Surnin A.A. Gold of the city of Yakutsk // Sci. First Hand. 2010. № 4 (34). P. 16–19.

14. Kostin A.V., Grinenko V.S., Oleinikov O.B., Jelonkina M.S., Krivoshapkin I.I. V.A.E. The first data about the manifestation of the Upper Cretaceous volcanism of transition zone «Siberian platform – VerkhoyanskKolyma folded area» // Arct. Subarct. Nat. Resour. 2015. Vol. 1, No. 77. P. 30–36.

15. Grinenko V.S., Kostin A.V., Kirichkova A.I. Z.M.S. NEW DATA ON THE UPPER JURASSIC - LOWER CRETACEOUS ROCKS IN THE EASTERN SIBERIAN PLATFORM // Vestn. Vor. Gos. Univ. Ser. Geol. 2018. Vol. 2. P. 48–55.

16. Kostin A.V, Trunilina V.A. Volcanogenic creations of Kangalassky terrace (left bank of the Lena River, Central Yakutia) // Adv. Curr. Nat. Sci. 2018. Vol. 5. P. 92–100.

17. Bakillah M., Liang S. Open geospatial data, software and standards // Open Geospatial Data, Softw. Stand. 2016. Vol. 1, No. 1. P. 1.

18. Minghini M. et al. Geospatial openness: from software to standards & data // Open Geospatial Data, Softw. Stand. 2020. Vol. 5, No. 1. P. 1.

19. Andersen J.C. Postmagmatic sulphur loss in the Skaergaard intrusion: implications for the formation of the Platinova Reef // Lithos. Elsevier, 2006. Vol. 92, No. 1–2. P. 198–221.

20. Kostin A.V. A new geological feature of volcanic origin in the Lena-Vilyui watershed (east of Siberian platform) // Adv. Curr. Nat. Sci. 2017. Vol. 2. P. 100–105.

21. Tegner C. Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion // Contrib. to Mineral. Petrol. 1997. Vol. 128, No. 1. P. 45–51.

22. Charlier B., Namur O., Grove T.L. Compositional and kinetic controls on liquid immiscibility in ferrobasalt–rhyolite volcanic and plutonic series // Geochim. Cosmochim. Acta. 2013. Vol. 113. P. 79–93.

23. Honour V.C. et al. Microstructural evolution of silicate immiscible liquids in ferrobasalts // Contrib. to Mineral. Petrol. 2019. Vol. 174, No. 9. P. 77.

24. LEEMAN W.P., VITALIANO C.J. Petrology of McKinney Basalt, Snake River Plain, Idaho // GSA Bull. 1976. Vol. 87, No. 12. P. 1777–1792.

25. Philpotts A.R. Compositions of immiscible liquids in volcanic rocks // Contrib. to Mineral. Petrol. Springer, 1982. Vol. 80, № 3. P. 201–218.

26. Waitt R.B. Great Holocene Floods along Jökulsá á Fjöllum, North Iceland // Flood and Megaflood Processes and Deposits. 2002. P. 37–51.

27. LARSEN G. et al. A shift in eruption mode of Hekla volcano, Iceland, 3000 years ago: two-coloured Hekla tephra series, characteristics, dispersal and age // J. Quat. Sci. John Wiley & Sons, Ltd, 2020. Vol. 35, No. 1–2. P. 143–154.

28. Tomshin M.D. et al. Native iron in the dolerites of the Aikhal sill (the first discovery in Yakutia) // Arct. Subarct. Nat. Resour. Государственное учреждение Академия наук Республики Саха (Якутия), 2019. Vol. 24, No. 3. P. 50–63.

29. Horwell C.J. et al. The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes // Bull. Volcanol. Springer, 2013. Vol. 75, No. 3. P. 1–19.

30. Reich M. et al. Formation of cristobalite nanofibers during explosive volcanic eruptions // Geology. Geological Society of America, 2009. Vol. 37, No. 5. P. 435–438.

31. Schipper C.I. et al. Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile) // Bull. Volcanol. 2015. Vol. 77, No. 5. P. 34.

32. Nadeau O. Ore metals beneath volcanoes // Nat. Geosci. 2015. Vol. 8, No. 3. P. 168–170.

33. Silaev V.I. et al. Mineral Phase Paragenesis in Explosive Ejecta Discharged by Recent Eruptions in Kamchatka and on the Kuril Islands. Part 2. Accessory Minerals of the Tolbachik Type Diamonds // J. Volcanol. Seismol. 2019. Vol. 13, No. 6. P. 376–388.

34. Kamenetsky V.S. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt // Chem. Geol. 2017. Vol. 471. P. 92–110.

35. Zelenski M. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts // Chem. Geol. 2018. Vol. 478. P. 102–111.

36. Li C., Boudreau A.E. The origin of high-Cu/S sulfides by shallow-level degassing in the Skaergaard intrusion, East Greenland // Geology. GeoScienceWorld, 2017. Vol. 45, No. 12. P. 1075–1078.


Рецензия

Для цитирования:


Kostin А.V. Mineralization in the Kildyam mafic volcanic rocks – a magmatic contribution to ore-forming fluids (Central Yakutia, Russia). Природные ресурсы Арктики и Субарктики. 2021;26(2):49-71. https://doi.org/10.31242/2618-9712-2021-26-2-3

For citation:


Kostin A.V. Mineralization in the Kildyam mafic volcanic rocks – a magmatic contribution to ore-forming fluids (Central Yakutia, Russia). Arctic and Subarctic Natural Resources. 2021;26(2):49-71. https://doi.org/10.31242/2618-9712-2021-26-2-3

Просмотров: 93


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)