Preview

Arctic and Subarctic Natural Resources

Advanced search

Investigation on thermooxidative aging of the polymer composite material by acoustic emission

https://doi.org/10.31242/2618-9712-2021-26-3-155-168

Abstract

Results of the investigation on the effect of thermooxidative aging conditions on the destruction of polymer composite material (PCM) based on recordable parameters of acoustic emission (AE) are reported. The objects of investigation were the samples cut out of a fiberglass plate. The plate was made by vacuum infusion using the Derakane 411-350 binder and 9 layers of St-62004 glass fabric. Samples were aged by exposing in the muffle furnace for 96 hours at a temperature of 60, 100, 120 and 200 °C. Mechanical tests were carried out by three-point static bending. AE was recorded with the hardware and software complex deleloped at the Komsomolsk-na-Amure State University. Two-stage clusterization of the frequency components of the signal spectra of the detected AE was carried out using the Kohonen self-organizing map according to the procedure developed previously and tested by the authors. The types of damage of PCM structure are characterized over the centroids of the resulting clusters. The kinetics of destruction process is described on the basis of cluster accumulation during mechanical tests, depending on the conditions of thermooxidative aging. The negative effect of increased temperature on the degradation of the polymer matrix was determined, leading to a decrease in the ability of efficient distribution of internal strain in the matrix over the PCM volume due to distortion of the adhesion with reinforcing material.

About the Authors

A. A. Bryansky
Komsomolsk-na-Amure State University, Komsomolsk-on-Amur
Russian Federation

BRYANSKY, Anton Aleksandrovich, postgraduate student

27 Lenina pr., Komsomolsk-on-Amur 681013



O. V. Bashkov
Komsomolsk-na-Amure State University, Komsomolsk-on-Amur
Russian Federation

BASHKOV, Oleg Viktorovich, Dr. Sci. (Eng.), professor, head of the department

27 Lenina pr., Komsomolsk-on-Amur 681013



D. P. Malysheva
Komsomolsk-na-Amure State University, Komsomolsk-on-Amur
Russian Federation

MALYSHEVA, Darya Pavlovna, postgraduate student

27 Lenina pr., Komsomolsk-on-Amur 681013



References

1. Kensche C.W. Fatigue of composites for wind turbines // International journal of fatigue. 2006. Vol. 28, No. 10. P. 1363–1374. DOI:10.1016/j.ijfatigue.2006.02.040

2. Saeedifar M. et al. Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission // Composites Part B: Engineering. 2018. Vol. 144. P. 206–219. DOI: 10.1016/j.compositesb.2018.02.028

3. Bohmann T., Schlamp M., Ehrlich I. Acoustic emission of material damages in glass fibre-reinforced plastics //Composites Part B: Engineering. 2018. Vol. 155. P. 444–451. DOI:10.1016/j.compositesb.2018.09.018

4. Ramesh C. et al. Effect of hydrolytic ageing on Kevlar/polyester using acoustic emission monitoring // Journal of Nondestructive Evaluation. 2012. Vol. 31, No. 2. P. 140–147. DOI:10.1007/s10921-012-0129-9

5. Shin P.S. et al. Interfacial properties and water resistance of epoxy and CNT-epoxy adhesives on GFRP composites // Composites Science and Technology. 2017. Vol. 142. P. 98–106. DOI:10.1016/j.compscitech.2017.01.026

6. Doan D.D. et al. An unsupervised pattern recognition approach for AE data originating from fatigue tests on polymer–composite materials // Mechanical Systems and Signal Processing. 2015. Vol. 64. P. 465–478. DOI: 10.1016/j.ymssp.2015.04.011

7. Philippidis T.P., Assimakopoulou T.T. Strength degradation due to fatigue-induced matrix cracking in FRP composites: An acoustic emission predictive model // Composites science and technology. 2008. Vol. 68, No. 15-16. P. 3272–3277. DOI:10.1016/j.compscitech.2008.08.020

8. Ohtsu M., Ono K. Pattern recognition analysis of acoustic emission from unidirectional carbon fiber-epoxy composites by using autoregressive modeling // Journal of Acoustic Emission. 1987. Vol. 6. P. 61–71.

9. Heidary H. et al. Clustering of acoustic emission signals collected during drilling process of composite materials using unsupervised classifiers // Journal of Composite Materials. 2015. Vol. 49. No. 5. P. 559–571. DOI:10.1177/0021998314521258

10. Zhou W., Zhang P., Zhang Y. Acoustic emission based on cluster and sentry function to monitor tensile progressive damage of carbon fiber woven composites // Applied Sciences. 2018. Vol. 8. No. 11. P. 2265. DOI: 10.3390/app8112265

11. Nazmdar Shahri M. et al. Damage evaluation of composite materials using acoustic emission features and Hilbert transform // Journal of Composite Materials. 2016. Vol. 50. No. 14. P. 1897–1907. DOI:10.1177/0021998315597555

12. Godin N., Reynaud P., Fantozzi G. Challenges and limitations in the identification of acoustic emission signature of damage mechanisms in composites materials // Applied Sciences. 2018. Vol. 8, No. 8. P. 1267. DOI:10.3390/app8081267

13. Pineau P., Dau F. Subsampling and homogenization to investigate variability of composite material mechanical properties // Computer methods in applied mechanics and engineering. 2012. Vol. 241. P. 238–245. DOI:10.1016/j.cma.2012.06.003

14. Calabrese L., Campanella G., Proverbio E. Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete // Construction and Building Materials. 2012. Vol. 34. P. 362–371. DOI:10.1016/j.conbuildmat.2012.02.046

15. Rescalvo F.J. et al. Health monitoring of timber beams retrofitted with carbon fiber composites via the acoustic emission technique // Composite structures. 2018. Vol. 206. P. 392–402. DOI:10.1016/j.compstruct.2018.08.068

16. Crivelli D., Guagliano M., Monici A. Development of an artificial neural network processing technique for the analysis of damage evolution in pultruded composites with acoustic emission // Composites Part B: Engineering. 2014. Vol. 56. P. 948–959. DOI:10.1016/j.compositesb.2013.09.005

17. Roundi W. et al. Acoustic emission monitoring of damage progression in glass/epoxy composites during static and fatigue tensile tests //Applied Acoustics. 2018. Vol. 132. P. 124–134. DOI:10.1016/j.apacoust.2017.11.017

18. Ech-Choudany Y. et al. Unsupervised clustering for building a learning database of acoustic emission signals to identify damage mechanisms in unidirectional laminates // Applied Acoustics. 2017. Vol. 123. P. 123– 132. DOI:10.1016/j.apacoust.2017.03.008

19. Sause M.G.R. On use of signal features for acoustic emission source identification in fibre-reinforced composites //Journal of Acoustic Emission. 2018. Vol. 35. P. 129–140.

20. Zhou W. et al. Cluster analysis of acoustic emission signals and deformation measurement for delaminated glass fiber epoxy composites // Composite Structures. 2018. Vol. 195. P. 349–358. DOI:10.1016/j.compstruct.2018.04.081

21. Karimi N.Z., Minak G., Kianfar P. Analysis of damage mechanisms in drilling of composite materials by acoustic emission //Composite Structures. 2015. Vol. 131. P. 107–114. DOI:10.1016/j.compstruct.2015.04.025

22. Gutkin R. et al. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses // Mechanical systems and signal processing. 2011. Vol. 25, No. 4. P. 1393–1407. DOI:10.1016/j.ymssp.2010.11.014

23. Eaton M.J. et al. Principal component analysis of acoustic emission signals from landing gear components: an aid to fatigue fracture detection // Strain. 2011. Vol. 47. P. e588-e594. DOI:10.1111/j.1475-1305.2009.00661.x

24. De Oliveira R., Marques A.T. Health monitoring of FRP using acoustic emission and artificial neural networks // Computers & structures. 2008. Vol. 86. No. 3-5. P. 367–373. DOI:10.1016/j.compstruc.2007.02.015

25. Enoki M., Muto Y., Shiraiwa T. Evaluation of deformation behavior in LPSO-magnesium alloys by AE clusteringand inverse analysis // Journal of Acoustic Emission. 2016. Vol. 33. P. S71–S71.

26. Sause M.G.R. Acoustic emission source identification in large scale fibre reinforced composites // Journal of Acoustic Emission. 2016. Vol. 33. P. S223–S223.

27. Bryansky A.A., Bashkov O.V. Klasterizaciyа signalov akusticheskoj e›missii pri analize kinetiki nakopleniyа povrezhdenij v polimernom kompozicionnom materiale // Vserossijskaya konferenciya s mezhdunarodnym uchastiem «Aktual’nye problemy metoda akusticheskoj e’missii» (APMAE›-2021). 2021. P. 124.

28. McCrory J.P. et al. Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques //Composites Part B: Engineering. 2015. Vol. 68. P. 424–430. DOI:10.1016/j.compositesb.2014.08.046

29. Hao W. et al. Acoustic emission monitoring of damage progression in 3D braiding composite shafts during torsional tests // Composite Structures. 2019. Vol. 208. P. 141–149. DOI:10.1016/j.compstruct.2018.10.011

30. Boominathan R. et al. Acoustic emission characterization of the temperature effect on falling weight impact damage in carbon/epoxy laminates // Composites Part B: Engineering. 2014. Vol. 56. P. 591–598. DOI: 10.1016/j.compositesb.2013.09.002

31. Willems F., Benz J., Bonten C. Detecting the critical strain of fiber reinforced plastics by means of acoustic emission analysis // Journal of Acoustic Emission. 2016. Vol. 33. P. 261–270


Review

For citations:


Bryansky A.A., Bashkov O.V., Malysheva D.P. Investigation on thermooxidative aging of the polymer composite material by acoustic emission. Arctic and Subarctic Natural Resources. 2021;26(3):155-168. (In Russ.) https://doi.org/10.31242/2618-9712-2021-26-3-155-168

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9712 (Print)
ISSN 2686-9683 (Online)