Surface organic and inorganic carbon in the landscapes of the Lena-Amga interfluve (Central Yakutia)
https://doi.org/10.31242/2618-9712-2021-26-3-52-63
Abstract
The content of organic and inorganic carbon was evaluated in the upper part of the active layer of the Holocene sediments, represented mainly by sandy loam formed at the Bestyakh and Tyungyulyun terraces in the Lena-Amga interfluve. A clear pattern of organic carbon decrease from south to north in relation to the structural features of terraced landscapes is observed. On average, this parameter is 7.70 % Сorg at the southern margin of the Tyungyulyun pseudo-terrace, 1.64 % Сorg in the central part of the Tyungyulyun surface (the Byokyo region) , while to the north, at the joint of the Tyungyulyun and Bestyuakh surfaces, the content of organic carbon decreases to the minimal value, which is 0.99 % Сorg. Inorganic carbon exhibits a more complicated scattered distribution between the terraces. in the central part of the Tyungyulyun surface, its average content is 1.03 % Сinorg, with a sudden decrease at the Tyungyulyun pseudo-terrace to 0.19 % Сinorg and at the highland of the Ulu-Kyuel region to 0.03 % Сinorg. The effect of the post-pyrogene past at the Maya-2 and Bedzhelek sites is depicted in the depletion and loss of the noticeable content of organic carbon from the upper soil horizons in comparison with the Maya-1 region by 55 % and 80 %, respectively. At the same time, an increase in the content of carbon of plant origin up to the initial level is outlined during self-recovery for 19 years.
About the Authors
A. M. CherepanovaRussian Federation
CHEREPANOVA, Alexandra Mikhaylovna, junior researcher, 36 Merzlotnaya st., Yakutsk 677010;
master’s student, 48 Kulakovsky st., Yakutsk 677013
V. V. Spektor
Russian Federation
SPEKTOR, Valentin Vladimirovich1, Cand. Sci. (Geography), leading researcher
36 Merzlotnaya st., Yakutsk 677010
Researcher ID: J-9015-2018
A. G. Shepelev
Russian Federation
SHEPELEV, Andrei Gennadievich, Cand. Sci. (Biology), senior researcher, 36 Merzlotnaya st., Yakutsk 677010;
master’s student, 48 Kulakovsky st., Yakutsk 677013
Researcher ID: M-7299-2016
References
1. Kaufman D., McKay N., Routson C. et al. Holocene global mean surface temperature, a multi-method reconstruction approach // Sci Data. Vol. 201, No. 7. 2020. P. 1–13. https://doi.org/10.1038/s41597-020-0530-7.
2. Varney R.M., Chadburn S.E., Friedlingstein P. et al. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming // Nat. Commun. 2020. Vol. 11, No. 5544. https://doi.org/10.1038/s41467-020-19208-8.
3. Randers J., Goluke U. An earth system model shows self-sustained thawing of permafrost even if all man-made GHG emissions stop in 2020 // Sci. Rep. 2020. No. 10.18456. P. 1–9. https://doi.org/10.1038/s41598-020-75481-z.
4. Strauss J., Schirrmeister L., Grosse G. et al. Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability // Earth-Science Reviews. 2017. Vol. 172. P. 75–86. https://doi.org/10.1016/j.earscirev.2017.07.007.
5. Schuur E.A.G., Mack M.C. Ecological response to permafrost thaw and consequences for local and global ecosystem services // Annual Review of Ecology, Evolution, and Systematics. 2018. Vol. 49, No. 1. P. 279–301. https://doi.org/10.1146/annurev-ecolsys-121415-032349.
6. de Vrese P., Brovkin V. Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios // Nat. Commun. 2021. Vol. 12, No. 2688. https://doi.org/10.1038/s41467-021-23010-5.
7. Lindgren A., Hugelius G., Kuhry P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils // Nature. 2018. Vol. 560. P. 219–222. https://doi.org/10.1038/s41586-018-0371-0.
8. van Huissteden J. Thawing permafrost. Permafrost carbon in a warming Arctic. Springer, Cham, 2020. 508 p. https://doi.org/10.1007/978-3-030-31379-1.
9. Wild B., Gentsch N., Capek P. et al. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils // Sci. Rep. 2016. No. 6, 25607. https://doi.org/10.1038/srep25607.
10. Wild B., Andersson A., Broder L., Vonk J., Hugelius G., McClelland J. W., Song W., Raymond P.A., Gustafsson O. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost // Proceedings of the National Academy of Sciences of the U.S.A. 2019. Vol. 116, No. 21. P. 10280–10285. https://doi.org/10.1073/pnas.1811797116.
11. Walter A.K., Schneider von Deimling T., Nitze I. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes // Nat. Commun. 2018. Vol. 9, No. 3262. https://doi.org/10.1038/s41467-018-05738-9.
12. Schadel C., Koven C.D., Lawrence D.M. et al. Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming // Environmental Research Letters. 2018. Vol. 13, No. 10. P. 105002. https://doi.org/10.1088/1748-9326/aae0ff.
13. Meredith M., Sommerkorn S., Cassotta C. et al. Polar Regions // IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. 2019. P. 203–320.
14. Heffernan L., Estop‐Aragones C., Knorr K., Talbot J., Olefeldt D. Long‐term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation // Journal of Geophysical Research: Biogeosciences. 2020. Vol. 125, Is. 3. https://doi.org/10.1029/2019JG005501.
15. Koven C., Arora V. K., Cadule P. et al. 23rd Century surprises: Long-term dynamics of the climate and carbon cycle under both high and net negative emissions scenarios // Earth Syst. Dynam. Discuss. 2021. https://doi.org/10.5194/esd-2021-23.
16. Ma W., Zhai L., Pivovaroff A. et al. Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model // Biogeosciences. 2021. Vol. 18, Is. 13. P. 4005–4020. https://doi.org/10.5194/bg-18-4005-2021.
17. Solovev P.A. Kriolitozona severnoy chasti LenoAmginskogo mezhdurechya. M.: Izd-vo AN SSSR, 1959. 143 p.
18. Fedorov A.N., Vasilyev N.F., Torgovkin Y.I. et al. Permafrost-Landscape Map of the Republic of Sakha (Yakutia) on a Scale 1:1,500,000 // Geosciences. Vol. 8, No. 12 (465). 2018. P. 1–17. https://doi.org/10.3390/geosciences8120465.
19. Fedorov A.N., Konstantinov P.Ya. Reaktsiya merzlotnykh landshaftov Tsentralnoy Yakutii na sovremennye izmeneniya klimata i antropogennye vozdeystviya // Geografiya i Prirodnye Resursy. 2009. No. 2. P. 56–62.
20. Katasonov Ye.M., Ivanov M.S., Pudov G.G. i dr. Stroenie i absolyutnaya geokhronologiya alasnykh otlozheniy Tsentralnoy Yakutii. Novosibirsk: Nauka, 1979. 95 p.
21. Pochvenno-geograficheskoe rayonirovanie SSSR (v svyazi s selskokhozyaystvennym ispolzovaniem zemel). M., 1962. 422 p.
22. Blok D., Faucherre S., Banyasz I. et al. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra // Global Change Biology. 2018.Vol. 24,Is. 6. P. 2660–2672. https://doi.org/10.1111/gcb.14017.
23. Dodds W., Whiles M. Freshwater Ecology: Concepts and Environmental Applications of Limnology. 2nd Edition, Amsterdam: Elsevier, 2010. P. 829.
24. Bysyina M.F. Sistematicheskaya struktura lokalnykh flor Leno-Amginskogo mezhdurechya (Tsentralnaya Yakutiya) // Vestnik Tomskogo gosudarstvennogo universiteta. 2009. No. 322. P. 232–234.
25. Andreev V.N., Galaktionova T.F., Mikhaleva V.M. i dr. Luga Yakutii. M.: Nauka, 1975. 176 p.
26. Noguchi K., Matsuura Y., Sparrow S.D. et al. Fine root biomass in two black spruce stands in interiorAlaska: effects of different permafrost conditions // Trees. Vol. 30. 2016. P. 441–449. https://doi.org/10.1007/s00468-015-1226-z.
27. Mu C., Li L., Zhang F. et al. Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau // Arctic, Antarctic, and Alpine Research. 2018. Vol. 50, is. 1. e1447192. https://doi.org/10.1080/15230430.2018.1447192.
28. Masyagina O.V., Tokareva I.V., Prokushkin A.S. Post fire organic matter biodegradation in permafrost soils: Case study after experimental heating of mineral horizons // Science of the Total Environment. 2016. Vol. 573. P. 1255–1264. https://doi.org/10.1016/j.scitotenv.2016.04.195.
29. Masyagina O.V. Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: recent local estimations // Current Opinion in Environmental Science & Health. 2021. Special issue. https://doi.org/10.1016/j.coesh.2021.100283.
30. Ivanova G.A., Kukavskaya Ye.A., Zhila S.V. Vozdeystvie pozharov na parametry balansa ugleroda i komponenty ekosistemy v svetlokhvoynykh lesakh sredney Sibiri // Geo-Sibir. 2010. Vol. 4. No. 2. P. 54–58.
31. Knorre A.A., Kirdyanov A.V., Prokushkin A.S. et al. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia // Science of the Total Environment. 2019. Vol. 652. P. 314–319. https://doi.org/10.1016/j.scitotenv.2018.10.124
Review
For citations:
Cherepanova A.M., Spektor V.V., Shepelev A.G. Surface organic and inorganic carbon in the landscapes of the Lena-Amga interfluve (Central Yakutia). Arctic and Subarctic Natural Resources. 2021;26(3):52-63. (In Russ.) https://doi.org/10.31242/2618-9712-2021-26-3-52-63