The economic efficiency of using new thermal insulation materials in cold climate
https://doi.org/10.31242/2618-9712-2025-30-3-404-415
Abstract
The aim of this study was to establish criteria for the economic feasibility of using new thermal insulation materials in place of traditionally used materials for the thermal protection of engineering structures. Two scenarios were considered: the complete replacement of one material with another and the combined use of traditional and new thermal insulation materials. The criterion used was the ratio of the cost of materials required to achieve the standard thermal resistance of the entire insulation system. New indicators describing the relationship between the economic and thermophysical properties of materials were developed, particularly relating the specific cost of thermal insulation materials (cost per unit volume) to their thermal conductivity coefficient. To generalize the analysis, novel indicators were introduced: price simplex, thermal simplex, and thermal resistance simplex.We concluded, from an economic perspective, the use of new materials instead of traditional ones is justified if the ratio of the costs of the new and traditional materials does not exceed the reciprocal of the ratio of their thermal conductivity coefficients—that is, if the price simplex is lower than the reciprocal of the thermal simplex. Specific examples demonstrate the application of this methodology in evaluating the feasibility of using thin-film thermal insulation materials instead of mineral wool to achieve equivalent thermal protection. The analysis shows that, at current prices, thin-film materials are tens of times more expensive than traditional mineral wool insulation, even when accounting for a significant reduction in mineral wool’s thermal resistance due to moisture during operation. The results of these calculations clearly illustrate the newly established relationship between the economic and thermophysical characteristics of thermal insulation materials.
Keywords
About the Authors
A. F. GalkinRussian Federation
Galkin, Aleksandr Fedorovich, Dr. Sci. (Eng.), Chief Researcher
Scopus Author ID: 56559565600
Yakutsk
M. N. Zheleznyak
Russian Federation
Zheleznyak, Mikhail Nikolaevich, Dr. Sci. (Geol. and Mineral.), Corresponding Member of the Russian Academy of Sciences
ResearcherID: J-2544-2018,
Scopus Author ID: 22959266400
Yakutsk
A. F. Zhirkov
Russian Federation
Zhirkov, Aleksandr Fedotovich, Cand. Sci. (Eng.), Leading Researcher
ResearcherID: J-1225-2018,
Scopus Author ID: 56226280600
Yakutsk
V. Y. Pankov
Russian Federation
Pankov, Vladimir Yuryevich, Cand. Sci. (Geol. and Mineral.), Assistant Professor
ResearcherID: 4487803,
Scopus Author ID: 1325803806
Yakutsk
V. I. Baluta
Russian Federation
Baluta, Victor Ivanovich, Cand. Sci. (Eng.), Senior Researcher
Moscow
References
1. Kovlekov I.I., Dmitriev A.A Choice and estimation the heat-insulation’s parametres for mining of overburden on the placer gold deposit. Mining informational and analytical bulletin (scientifi and technical journal). 2013;(8):368–372. (In Russ.)
2. Dugartsyrenov A.V., Belchenko E.L. The heat insulation parameters during the soil freezing till permissible depth. Mining informational and analytical bulletin (scientific and technical journal). 2009;(6):44–47. (In Russ.)
3. Dugartsyrenov A.V., Belchenko E.L. The heat-insulation of waste disposals during mining placer deposits. Mining informational and analytical bulletin (scientific and technical journal). 2009;(2):129–133. (In Russ.)
4. Galkin A.F. Calculation of parameters of cryolithic zone mine openings thermal protection coating. Metallurgical and Mining Industry. 2015;(8):64–69.
5. Galkin A.F., Naumov A.A. Analysis of the effective use range of light concrete in underground mines in permafrost zone of the North. Gornyi Zhurnal. 2014;(4):99–101. (In Russ.)
6. Galkin A.F. Thermal insulation efficiency for underground structures in permafrost. Energy Safety and Energy Economy. 2021;(4):18–21. (In Russ.) https://doi.org/10.18635/2071-22192021-4-18-21
7. Bessonov I.V., Zhukov A.D., Bobrova E.Yu., et al. Analysis of design solutions depending on the type of insulating materials in road pavements in permafrost soils. Transport Construction. 2022;(1):14–17. (In Russ.)
8. Bessonov I.V., Bobrova E.Yu., Agafonova N.Z., et al. Design and modelling of temperature fields in thermal insulation systems in road foundations in permafrost soils. Transport Construction. 2022;(3):32–34. (In Russ.)
9. Ilyichev V.A., Nikiforova N.S., Konnov A.V. Prospects for the use of foam glass products in the foundation of buildings and structures on long term frozen soils. Housing Construction. 2024;9:36–41. (In Russ.) https://doi.org/10.31659/0044-44722024-9-36-41
10. Yartsev V.P., Ivanov D.V., Andrianov K.A. Forecasting durability of exstruded foam polystyrene in road structures. Nauchnyi zhurnal stroitel’stva i arkhitektury. 2010;19(3):99–104.(In Russ.)
11. Galkin A.F., Kurta I.V., Pankov V.Yu. Use of burned rocks in underground laying of cable lines in the cryolitzone. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2020;331(12):131–137. (In Russ.) https://doi.org/10.18799/24131830/2020/12/2946
12. Danilova N.I. Modern methods of insulation of building facades and the influence of thermal insulation of external walls on the energy saving of a building. Vestnik nauki. 2023; 4(12):1441–1447. Available at: https://www.вестник-науки. рф/article/12044 (accessed: 07/31/2025)
13. Andreev M.K., Gamayunova O.S. Facade insulation during renovation of residential buildings of standard series. Inzhenernyye issledovaniya [Engineering Research]. 2023;12(2):19–26. (In Russ.)
14. Loginova N.A., Prishchepov A.F. Characteristics of applied and prospective thermal insulation materials and coatings for heat supply systems. Energosberezhenie i vodopodgotovka. 2012; 80(6):20–21. (In Russ.)
15. Bulanovic V.F. New technology of energy-saving hydrothermal insulation of pipelines. Theory and Practice of Corrosion Protection. 2021;26(4):42–44. (In Russ.) https://doi.org/10.31615/j.corros.prot.2021.102.4-4
16. Makarchuk G.V., Sarkisov S.V., Melezhik A.O. On the choice of modern thermal insulation materials. In: Konovalov V.B. (ed.) Actual scientifi problems of military research: Collection of scientific papers. St. Petersburg: Polytechnic University Publishing House; 2019, pp. 336–343. (In Russ.)
17. Begich Ya.E., Turnaev E.E., Enikeev A.I. Operational properties of plaster facades with a thermal insulation layer of mineral wool and extruded polystyrene foam. In: Belyaev N.D. (ed.) Science Week of the Civil Engineering Institute – 2025: Collection of materials of the All–Russian Conference, St. Petersburg, April 1–4, 2025. Part 2. St. Petersburg: POLITYEKH-PRYESS; 2025, pp. 418–420. (In Russ.)
18. Agapitova A.A., Akhmerova G.M. Features of selection and calculation of thermal insulation of air ducts. Construction, Buildings and Structures. 2022;1(1):22–32. (In Russ.)
19. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing the thermal stability of the embankment in Permafrost Regions. Stroitel’nye materialy. 2021;(7):26–31. (In Russ.) https://doi.org/10.31659/0585-430X-2021-793-7-26-31
20. Panchenko Yu.F., Zimakova G.A., Panchenko D.A. Energy efficiency of the use of the new heat-protective material for reducing the heat consumption of buildings. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta – Journal of Construction and Architecture. 2011;33(4):97–105. (In Russ.)
21. Isanova A.V., Kretova E.D., Drapalyuk D.A., Drapalyuk N.A. Analysis of the use of modern thermal insulation based on aerogel in the design of energy-efficient buildings. Engineering and Construction Bulletin of the Caspian Region. 2023;44(2):5–11. (In Russ.) https://doi.org/10.52684/2312-3702-2023-44-2-5-11
22. Yartsev V.P., Mamontov A.A., Mamontov S.A. Operating properties and durability of heat-insulating materials (mineral wool and expanded polystyrene). Roofing and Insulation Materials. 2013;(1):8–11. (In Russ.)
23. Gusev B.V., Yezersky V.A., Monastyrev P.V. Thermal conductivity of mineral wool slabs under operating conditions. Promyshlennoe i grazhdanskoe stroitelstvo = Industrial and Civil Engineering, 2005;(1):48–49. (In Russ.)
24. Gusev B.V., Yezersky V.A., Monastyrev P.V. Weight loss of mineral wool slabs under operating conditions. Roofing and Insulation Materials. 2005;(2):48–49. (In Russ.)
25. Ryzhenkov V.A., Prishchepov A.F., Loginova N.A., Kondratiev A.P. On the effect of a structured thin-film thermal insulation coating on the thermal resistance of heat pipelines. Energosberezhenie i vodopodgotovka = Energy Saving and Water Treatment. 2010;(5):58–59. (In Russ.)
26. Bukhmirov V.V., Gaskov A.K. Research of energy efficiency of coatings for thermal insulation of buildings. Cherepovets State University Bulletin. 2015;69(8):7–11. (In Russ.)
27. Bukhmirov V.V., Gaskov A.K. Experimental study of thinfilm energy-saving coatings based on hollow microspheres. In: Modern scientific achievements of metallurgical heat engineering and their implementation in industry: collection of reports of the 2nd International Scientifi and Practical Conference, Yekaterinburg, September 18–21, 2017. Yekaterinburg: Ural University Press; 2018, pp. 37–40. (In Russ.)
28. Panchenko Yu.F., Zimakova G.A., Stepanov O.A., Panchenko D.A. Heat-insulating coating based on liquid foil and hollow microspheres. Stroitel’nye materialy [Construction Materials]. 2012;(8):83–85 (In Russ.)
29. eorgiyadi V.G., Agapov A.A., Poverennyy Yu.S., et al. The use of ultrafi thermal insulation in the development of deposits in permafrost distribution. Neftyanoe khozyaystvo – Oil Industry. 2023;(1):52–57. (In Russ.) https://doi.org/10.24887/00282448-2023-1-52-57
30. Shirinyan V.T. The campaign of liquid ceramic “super thermal insulation” coating on the heating networks of Russia. Novosti teplosnabzheniya. 2007;(9):46–51. Available at: https://www.rosteplo.ru/Tech_stat/stat_shablon.php?id=1953 (accessed: 14.06.2025)
31. Matviyevsky A.A., Abyzova T.Yu., Alexandria M.G. Liquid ceramic thermal insulation coatings. The tale of the naked King. Stroyprofil. 2010;(3):28–30. Available at: https://stroyprofile.com/archive/3983 (accessed: 14.06.2025)
32. Polovnikov V.Yu. Conductive heat transfer in layer of thinfilm thermal insulation. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2019;330(5):189–197. (In Russ.) https://doi.org/10.18799/24131830/2019/5/279
33. Efficiency of thermal insulation paints. Available at: https://fibroblok.ru/info/info/effektivnost_teploizolacyonnyh_krasok#!/back (accessed: 14.08.2025)
34. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Criterion of choice of building materials for thermal insulation layers of road clothes and bases. Advances in Current Natural Sciences. 2022;(8):108–113. (In Russ.) https://doi.org/10.17513/use.37875
35. Galkin A.F., Zheleznyak M.N., Zhirkov A.F. Increasing thermal stability of the roads in cryolithic zone. Transportation Research Procedia. 2022;63:412–419. https://doi.org/10.1016/j.trpro.2022.06.029
36. Dulnev G.N., Zarichnyak Yu.P. Thermal conductivity of mixtures and composite materials. Leningrad: Energiya Publ.; 1974. 264 p. (In Russ.)
37. Lichtenecker K. Zur Widerstands berech ung misch kristall freier Legier ungen. Physikalische Zeitschrift. Bd.30. 1929;22:805–810.
Review
For citations:
Galkin A.F., Zheleznyak M.N., Zhirkov A.F., Pankov V.Y., Baluta V.I. The economic efficiency of using new thermal insulation materials in cold climate. Arctic and Subarctic Natural Resources. 2025;30(3):404-415. (In Russ.) https://doi.org/10.31242/2618-9712-2025-30-3-404-415