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Математическими моделями движения жидкостей и конвективной диффузии примесей в пори-
стых средах являются дифференциальные уравнения эволюционного типа. Для определения их пара-
метров по дополнительной информации о поведении искомых функций (данные измерений) предло-
жено два метода, один из которых применим для определения постоянных параметров, а второй – 
для параметров, зависящих от пространственных координат. На конкретных примерах показано, 
что эффективность методов существенно возрастает с увеличением числа пространственных из-
мерений, тогда как увеличение их частоты по времени ведет к повышению чувствительности – про-
цесс восстановления приобретает колебательный характер. 
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Mathematical models of fluid flow and contaminations spreading in porous media are partial differential 
equations of evolution type. Two methods of their parameters identification have been proposed: the first one 
for constant parameter values, the second – for distributed ones. In terms of boundary value problems for the 
equation of transient fluid flow in porous media it has been shown that efficiency of the methods strongly de-
pends on the number of measuring transducers whereas sample rate influences the methods’ response. 
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Гидравлические модели, соответствующие 
нестационарным режимам течения, описывают-
ся дифференциальными уравнениями в частных 
производных эволюционного типа. Задачи 
идентификации параметров таких моделей 
начали рассматриваться сравнительно недавно в 
силу значительных вычислительных трудностей 
и отсутствия общей теории для таких задач. Ис-
пользуемые в настоящее время методы их ре-
шения и в идейном плане, и в техническом осу-
ществлении сходны с методами идентификации 
моделей, описываемых обыкновенными диффе-
ренциальными уравнениями [1]. 5 

Пусть общая эволюционная задача имеет вид 

 ,,,,, xxx yyyxtf
t
y





              (1) 

с необходимыми начальными и краевыми усло-
виями в области 0t , 10  x . Здесь y  – век-
тор искомых функций, t  – время, x  – про-
странственная переменная; нижние индексы 
обозначают частные производные первого и 
второго порядка. 

Требуется определить вектор неизвестных 
параметров const  из условия минимума 
функционала 
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При известном начальном приближении s  и 
соответствующем ему 

sу  исходную задачу (1) 
можно свести к последовательности линейных 
задач 

   xtbxtaLy ss ,, 11    ,            (3) 

где L  – линейный дифференциальный опера-
тор, имеющий вид  
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а  xta ,  и  xtb ,  – соответственно матричная и 

векторная функции 
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 . Аналогично линеари-

зуются граничные условия. 
Решение (3), используя идеи метода матрич-

ной прогонки по параметру [1], представим в 
виде 

zXy ss   11  .                     (4) 

В результате из (3) получим для определения 
X  и z  две линейные краевые задачи: 

 xaLX  ;                          (5) 

 xbLz  .                          (6) 

Решение задач (5), (6) и формула (4) позво-
ляют в явном виде получить зависимость 
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 1sJ   и в дальнейшем определить 1s  из не-
обходимого условия стационарности по формуле 

  dtdxXGzydtdxXGX
TT
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На этом заканчивается один шаг итерацион-
ного процесса. Следующие приближения 2s , 

3s  и т.д. определяются аналогично.  
Этот вариант метода идентификации будет 

нами использоваться при решении некоторых 
конкретных задач. Основное его достоинство 
заключается в том, что на каждом итерацион-
ном шаге решаются краевые задачи (5) и (6), 
отличающиеся только правой частью, при этом 
если исходная задача при заданных   коррект-
но разрешима, то и задачи (5), (6) корректно 
разрешимы. 

Для восстановления распределенных, т.е. за-
висящих от пространственной переменной, па-
раметров модели в работах [2, 3] предложен 
градиентный метод, который базируется на не-
обходимых условиях оптимальности (равенство 
нулю первой вариации функционала). Пусть 
модель некоторого процесса описывается урав-
нением 
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 ,      (7) 

где неизвестный параметр  x  есть функция 
переменной x . Начальные и граничные условия 
заданы в виде: 

   xyxy 00,  ;                        (8) 

  0,,0 xyytg  при 0x ;             (9) 

  0,,1 xyytg  при 1x .            (10) 

Требуется выбрать  x  таким образом, 
чтобы минимизировать функционал (2). Приме-
няя стандартную технику [3], можно показать, 
что первая вариация функционала имеет вид 

 

     ,1

1

0 0

dxdtxfxf

ffJ

xx

x

T

x















    

 

где  x  – дельта-функция Дирака;   – сопря-
женная вектор-функция, удовлетворяющая 
уравнению 
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и условиям 

  0, Tx ;                           (12) 
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при 0x ;                        (13) 
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Таким образом, для того чтобы приращение 
J  было отрицательно на каждой итерации, 

достаточно задать приращение вектора пара-
метров  x  в виде 
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где  xW  – положительно-определенная матри-
ца весомых множителей размерности rr . 

Численный алгоритм нахождения  x  мож-
но построить следующим образом: 

1) выбираем начальное приближение  x0  и 
матрицу весовых множителей  xW ; 

2) решаем систему (7)–(10) от 0t  до Tt  . 
Находим значение функционала   xJ s . Ре-
шаем систему (11)–(14) от Tt   до 0t ; 

3) по формуле (15) вычисляем  xs  и 
     xxx sss  1 ; 

4) повторяем шаг 2 до выполнения условия 
   sss JJJ 1 . 

Дальнейшее изложение ведется на конкрет-
ном примере модельного уравнения теории 
фильтрации с постоянными коэффициентами. 
Это уравнение соответствует линеаризованному 
уравнению Буссинеска для прогноза уровня 
грунтовых вод или уравнению упругого режима 
фильтрации. 

В области  lx ,0 ,  Tt ,0  рассмотрим 
уравнение 
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в котором коэффициент constλ  подлежит 
определению. 

Пусть nxxx ,...,, 21  – характерные точки ме-
лиорируемой территории, в которых произво-
дится измерение уровня грунтовых вод. Данные 
этих измерений – известные функции времени 
  njtz j 1, . 
Как и прежде, будем искать параметр   из 

условия минимума функционала 
 

      



n

j

T

jj dzxuJ
1 0
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Кроме того, для уравнения (16) обычным об-
разом задаем начальные и граничные условия. 

Условие стационарности функционала (17) 
будет иметь вид 
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  0,  dxw j .                   (18) 

Здесь, как и ранее, мы ввели специальное 
обозначение для производной функции состоя-
ния u  по параметру   

uw  .                           (19) 

Разложим в ряд функцию u  в окрестности s  
с точностью до членов второго порядка 
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ss ,,, 1
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Для сокращения записи здесь и далее счита-
ется, что нижний индекс s  у функции означает, 
что она вычисляется при значении s  . 

Подставляя разложение (20) в соотношение 
(18), линеаризуем это соотношение относитель-
но параметра 1s  следующим образом: 
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Отсюда легко вычислить следующее прибли-
жение 1s , если функции  txus ,  и  txws ,  
известны 
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Чтобы получить уравнение для функции 
 txws , , проведем линеаризацию исходного 

уравнения (16) относительно решения на ниж-
нем итерационном слое: 
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где ss   1 . 
Подставляя в уравнение (22) разложение (20) 

и приравнивая коэффициенты при   нулю, 
получим следующую систему уравнений: 
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Уравнения (23) и (24) при заданном значении 
s  могут быть решены последовательно одним 

из известных численных методов. Граничные и 
начальные условия для функции w  могут быть 
получены из соответствующих условий для 
функции u  путем дифференцирования их по 
параметру  . 

Численную реализацию изложенного метода 
рассмотрим на примере определения параметра 
  в однородном уравнении (16) 
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Эта задача имеет аналитическое решение 
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которое использовалось для вычисления «дан-
ных измерений»  kj txz ,  при 2,0 . Эти ве-
личины вычислялись в пяти точках простран-
ства 8,0;6,0;4,0;2,0;0jx  и в дискретные 
моменты времени kt , число которых варьирова-
лось. Кроме этого варьировалась величина вре-
менного интервала T , на котором осуществля-
лась идентификация. Как показали вычисления, 
даже при задании начального приближения 0  
в точности равного 0,2, рассмотренный алго-
ритм расходится. По мере увеличения количе-
ства итераций параметр s  колеблется возле 
точного значения с возрастающей амплитудой. 
Поэтому для решения данной задачи нами был 
использован модифицированный метод второго 
порядка. Согласно этому методу, на каждом 
итерационном слое вместо функционала (17) 
применялся функционал 

 

     211 ssss
N NJJ    ,      (25) 

 

где N  – достаточно большая положительная 
постоянная. 

На рис. 1 показано поведение определяемого 
параметра в зависимости от величины N . При 
этом уравнения (23) и (24) решались с помощью 
неявной разностной схемы. Сетка разбивала про-
странственный отрезок  1,0x  на 10 интерва-
лов, временной отрезок )8.0,0[t  на 100 ин-
тервалов. Точное решение вычислялось в 505  
точках пространства–времени. Кривые 1–4 со-
ответствуют следующим значениям множителя  
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Рис. 1. Сходимость определяемого параметра: 1 – 100N ; 

2 – 40N ; 3 – 20N ; 4 – 10N  

 
10;20;40;100N . Как видно, введение мо-

дифицированного функционала (25) очень на-
поминает введение демпфера в колебательный 
процесс. При достаточно больших значениях 
«вязкости» ( 100N ) процесс перестает быть 
колебательным и параметр   подходит к точке 
равновесия с одной стороны. При малых значе-
ниях N  ( 10N ) параметр  совершает незату-
хающие колебания вокруг точки равновесия. 

Влияние количества «измерений» на качество 
процесса восстановления параметра   показано 
на рис. 2. В этом случае уравнения (23) и (24) 
решались на сетке 10010  узлов при 40N . 
Кривые 1–4 соответствуют случаям, когда точ-
ное решение вычисляется в 505 , 503 , 

205 , 5010  точках пространства–времени. 
Как видно, количество пространственных изме-
рений довольно существенно отражается на ка-
честве восстановления. Увеличение же количе-
ства  замеров  по  времени  ведет  к  повышению 
чувствительности, процесс восстановления при-
обретает колебательный характер. 

В связи с тем, что при решении уравнений 
(23) и (24) используется разностная аппрокси-
мация, полученное в результате значение иско-
мого параметра несколько отличается от «точ-
ного» значения 2,0 . Таким образом, факти-
чески имитируется случайная погрешность 
наблюдений. Вообще говоря, такая ситуация 
имеет место всегда, так как при использовании 
конечно-разностных методов идентифицируют-
ся не параметры исходного уравнения, а пара-
метры его разностного аналога.  

Рис. 3 демонстрирует влияние количества 
временных слоев разностной схемы на качество 
восстановления. Точное решение вычислялось в 

205  точках пространства–времени при 
40N . Кривая 1 соответствует сетке из  

 

 
Рис. 2. Влияние количества замеров на качество сходимости 

итерационного процесса: 1 – 50×50 точек; 2 – 3×50 точек; 3 – 

5×20 точек; 4 – 10×50 точек пространства–времени 

 

(26)  

Рис. 3. Влияние количества временных слоев разностной схе-

мы на сходимость итерационного процесса: 1 – 100 временных 

слоев; 2 – 40 временных слоев 

 
10010  узлов, кривая 2 – сетке из 4010  уз-

лов. Как ни странно, сетка с меньшим количе-
ством временных слоев (кривая 2) приводит к 
более точному восстановлению параметра  . 
Это, по-видимому, связано с накоплением по-
грешностей при увеличении количества вычис-
лений. Заметим, что применение сеток из 

12010  и 2010  узлов дает кривые восста-
новления, практически совпадающие с линиями 
1 и 2, соответственно. 

Теоретически необходимость введения моди-
фицированного функционала (25) может быть 
обоснована с помощью теорем теории опти-
мального управления системами, описываемы-
ми уравнениями с частными производными па-
раболического типа, сформулированных Ж.-Л. 
Лионсом [4]. 

Уравнение (22) на верхнем итерационном 
слое может быть переписано в виде 
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а функционал (25) в виде 

        2
1 0

2,  NdzxuJ
n

j

T

jjN 


. (27) 

Существует единственное значение   , 
удовлетворяющее условию минимума функцио-
нала (27) на  1s -м итерационном слое только 
при условии 0N  [4]. Если 0N , то условие 
единственности может быть не выполнено. Для 
того чтобы условие единственности было вы-
полнено и при 0N , требуются измерения 
производных по времени от функции u . В этом 
случае функционал задачи должен иметь вид 
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где  1
jz  – дополнительные данные наблюде-

ний. 
Однако на практике непосредственное изме-

рение производных затруднительно, а диффе-
ренцирование данных наблюдений функции u  
вносит большие погрешности. 

Следует отметить, что условия минимума мо-
дифицированного функционала (25) совпадают 
с условиями для исходного функционала (17). 
Интересно, что введение в исходный функцио-

нал (17) добавки вида (25) аналогично введению 
своеобразной функции штрафа на каждой ите-
рации. Мы как бы «штрафуем» функционал за 
большое отклонение нового значения 1s  от 
значения s  на предыдущей итерации. 

Как показывает опыт решения конкретных 
задач, привлечение дополнительной информа-
ции о решении (знание производных или более 
разнообразный набор измеряемых функций в 
случае систем уравнений) улучшает качество 
процесса восстановления неизвестных парамет-
ров. 
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