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Аннотация 
Приводятся результаты применения методов машинного обучения для прогнозирования золоторудной ми-
нерализации на поисковой стадии геологоразведочных работ на примере Верхнеамгинского щелочного мас-
сива Алдано-Станового щита. Использованы данные анализа 403 штуфных проб методом ICP-AES на 25 хи-
мических элементов. Протестированы восемь алгоритмов классификации: Random Forest, Support Vector 
Machine, Neural Network (Multilayer Perceptron), Boosting (AdaBoost), Decision Tree, K-Nearest Neighbors, 
Linear Discriminant Analysis и Naive Bayes. Наивысшую точность (до 89,6 %) продемонстрировали Ran-
dom Forest и Support Vector Machine, основанные на выявлении взаимосвязей между рудными элемента-
ми (Au, Ag, As, Cu, Sb) и элементами с отрицательной корреляцией (Mg, Ca, Ti). Результаты подтвержде-
ны ROC-анализом. При создании модели машинного обучения в качестве целевой переменной приняты 
значения «рудного» фактора для каждой пробы, использованные в качестве предиктора. С помощью по-
строения аномальных полей значений «рудного» фактора проведено сравнение параметров известных 
объектов и прогнозируемых площадей. Методы машинного обучения позволяют оперативно и надежно 
интерпретировать аналитические данные, полученные с использованием спектрометрии или портатив-
ных XRF-анализаторов. Для повышения точности прогноза подчеркивается важность комбинации тради-
ционных статистических методов (кластерный, факторный анализ) с современными алгоритмами машин-
ного обучения.
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Abstract
The study reports on the application of machine learning methods for predicting gold mineralization in the prospecting 
phase of geological exploration. It focuses on the Verkhneamginsky alkaline massif, situated within the Aldan-Stano-
voy Shield, as a case study. The investigation included the analysis of 403 ore samples, which were evaluated through 
Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) to determine the concentrations of 25 chemi-
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cal elements. A total of eight classification algorithms were assessed in this investigation, including Random Forest, 
Support Vector Machine, Neural Network (Multilayer Perceptron), Boosting (AdaBoost), Decision Tree, K-Nearest 
Neighbors, Linear Discriminant Analysis, and Naive Bayes. The Random Forest and Support Vector Machine algo-
rithms demonstrated the highest accuracy, achieving 89.6%, by identifying the relationships among ore elements (Au, 
Ag, As, Cu, Sb) and those elements that displayed negative correlations (Mg, Ca, Ti). These results were further vali-
dated through Receiver Operating Characteristic (ROC) analysis. In the process of developing the machine learning 
model, the values corresponding to the “ore” factor for each sample were designated as the target variable, while 
serving as predictors. To enable a comparative analysis between the parameters of established entities and the pre-
dicted regions, anomalous fields of the “ore” factor values were constructed. Additionally, machine learning methods 
enable the rapid and reliable interpretation of virtually any geochemical analytical data in the field, including data 
obtained through modern spectrometry methods and portable X-ray fluorescence (XRF) analyzers. The research fur-
ther underscores the significance of integrating traditional statistical approaches, such as cluster and factor analysis, 
with contemporary machine learning algorithms to improve the accuracy of predictions. 
Keywords: machine learning, gold mineralization, geochemical data, exploration, Verkhneamginsky alkaline massif, 
Aldan-Stanovoy Shield
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Введение
Для снижения финансовых рисков и повыше-

ния точности прогнозирования на разных стадиях 
геологоразведочных работ применяются высоко-
эффективные методы обработки аналитических 
данных [1, 2]. Традиционные статистические под-
ходы обладают ограничениями в интерпретации 
сложных многомерных зависимостей [3]. Новые 
возможности открываются при использовании 
методов машинного обучения за счет автомати-
зированного выявления скрытых закономерно-
стей в больших массивах геологической инфор-
мации [3–6].

В данном исследовании показана возможность 
применения алгоритмов машинного обучения для 
прогнозирования по результатам штуфного опро-
бования золоторудной минерализации в пределах 
Верхнеамгинского щелочного массива Алдано-
Станового щита. Этот район характеризуется 
мезозойским щелочным магматизмом и широким 
развитием метасоматических процессов, связан-
ных с золото-медно-порфировым и золото-порфи-
ровым типами оруденения, сходными с месторо-
ждениями Рябиновое и Морозкинское [7, 8]. 

Материалы и методы исследования
Материалом исследования являются результа-

ты анализов штуфных проб, отобранных в пре-
делах Верхнеамгинского щелочного массива 
в 2021–2024 гг. Штуфные пробы, имеющие ви-
димые метасоматические изменения (гумбеити-

зация, березитизация и фельдшпатизация), отби-
рались в ходе геологических маршрутов вне сети 
опробования. Пробы проанализированы пробир-
ным методом с ICP-AES-о окончанием (на золото) 
и мультиэлементным (ICP-AES) методом атомно-
эмиссионной спектроскопии с индуктивно-связан-
ной плазмой на 35 химических элементов. 

Предварительно из общей выборки были 
исключены пробы, генетически не связанные 
с горными породами Верхнеамгинского щелоч-
ного массива (доломиты, известняки, песчаники 
и др.). В ходе дальнейшей статистической обра-
ботки из выборки удалены химические элемен-
ты, для которых количество проб со значениями 
НПО (нижний порог обнаружения) не является 
представительным (B, Bi, Ga, Hg, Tl, Th, U, W), 
а также Al, K, Na. 

В сформированной выборке из 25 химиче-
ских элементов были замены значения НПО на 
0,5 ⋅ НПО, а ВПО (верхний порог обнаружения) 
на 1,05 ⋅ ВПО, исключены также ураганные 
значения. Для дальнейших исследований ис-
пользованы 403 штуфные пробы, для которых 
определялся характер распределения элемен-
тов (log-нормальный или нормальный). По резуль-
татам для всех химических элементов принят 
log-нормальный закон распределения. Значения 
логарифмированы и нормализованы методом 
z-стандартизации для приведения переменных 
к единому масштабу с нулевым средним и еди-
ничной дисперсией.
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Статистические исследования являются не-
отъемлемой частью на любой стадии геолого-
разведочных работ. Наиболее часто на поисковой 
стадии применимы методы многомерной стати-
стики (корреляционный, кластерный, факторный 
(метод главных компонент) анализы), принадле-
жащие к наиболее ценным и полезным методам 
для выделения участков, перспективных для вы-
явления любого типа минерализации. Каждый из 
методов имеет свои ограничения при интерпре-
тации полученных результатов [3, 5]. 

В последние десятилетия все более широкое 
распространение получают методы машинного 
обучения, являющиеся дальнейшим развитием 
методов многомерной статистики [3, 5]. Машин-
ное обучение (МО) – это область искусствен-
ного интеллекта, которая использует алгоритмы 
для получения информации из данных и создания 
моделей, способных решать задачи без явного 
программирования. Искусственный интеллект, 
в свою очередь, описывает создание систем, спо-
собных имитировать человеческую интеллекту-
альную и творческую деятельность. В этом кон-
тексте машинное обучение представляет собой 
имитацию процесса обучения.

В машинном обучении выделяют четыре ос-
новные категории: обучение с учителем (класси-
фикация, регрессия), обучение без учителя (ассо-
циация, кластеризация, уменьшение размерности), 
полуконтролируемое обучение и активное обуче-
ние [5]. В данной работе рассматриваются только 
классификационные методы машинного обучения 
с учителем (Boosting (AdaBoost), Decision Tree, 
K-Nearest Neighbors, Linear Discriminant Analysis, 
Naive Bayes, Neural Network (Multilayer Percep-
tron), Random Forest и Support Vector Machine). Об-
учение машины и прогнозирование результата 
выполняются на основе положительного приме-
ра [5]. Основной задачей классификации в машин-
ном обучении с учителем является определение 
принадлежности объекта к определенному классу 
или виду [5, 9]. 

Региональная геологическая позиция 
Верхнеамгинский щелочной массив располо-

жен на территории одноименного золотоносно-
го района Алдано-Станового щита. Территория 
исследуемого района входит в состав Амгин-
ской субмеридиональной зоны тектонического 
меланжа, отделяющей Нимнырский и Западно-
Алданский террейны [10]. В строении Амгинской 
зоны участвуют архейские комплексы, мета-

морфизованные в амфиболитовой и эпидот-
амфиболитовой фациях, раннепротерозойские 
ортогнейсовые и парагнейсовые комплексы суб-
гранулитовой–гранулитовой фаций, а также фраг-
менты архейских и раннепротерозойских зе-
ленокаменных поясов и дифференцированные 
плутоны ультраосновных, основных и щелоч-
ных пород. Верхнеамгинский золотоносный рай-
он характеризуется многоярусным строением: 
нижнедокембрийский фундамент, венд-нижне-
кембрийский осадочный чехол и мезозойские 
участки активизации (рис. 1) [11]. Архейские 
структуры фундамента с несогласием перекрыты 
венд-нижнекембрийским платформенным чехлом 
морских глинисто-карбонатных осадков. На от-
дельных участках в северной и восточной частях 
района на вершинах водоразделов сохранились 
мезозойские терригенные отложения юрской (юх-
тинская свита) и кайнозойской систем. 

Основной объем магматических образований 
связан с мезозойской тектоно-магматической 
активизацией. Преобладают штоки щелочных 
сиенитов и монцонитов площадью десятки км2. 
Встречаются отдельные тела и дайки щелочных 
гранитов, а также силлы и дайки лампрофиров. 
Дайки лампрофиров (протяженностью до 2 км 
и мощностью первые десятки метров) имеют 
преимущественно северо-западное и северо-вос-
точное простирание, соответствующее преобла-
дающим направлениям тектонических разломов. 
С щелочными интрузиями связаны зоны суль-
фидизации, окварцевания и скарнирования с зо-
лоторудной минерализацией. Специфической 
особенностью мезозойского магматизма на Алда-
но-Становом щите является его калиевый уклон, 
отмечаются породы калий-натриевого ряда [13, 
14]. Внедрение основного объема щелочных си-
енитов происходило 129,1±2,5 млн лет назад, 
а даек и силлов мезократовых лампрофиров (ми-
нетт) – 117,7±3,4 млн лет назад [7].

Металлогеническая специализация Верхне-
амгинского золотоносного района определяется 
карстовыми образованиями (Куранахский тип), 
скарновой (Лебединский тип) и золото-медно-пор-
фировой (Рябиновый тип) минерализацией [8].

Рудные тела Куранахского типа представле-
ны залежами, приуроченными к карстовым по-
лостям. Это рыхлые, обломочные, супесчано-
суглинистые минерализованные образования по 
метасоматически измененным нижнекембрий-
ским карбонатным отложениям и юрским пес-
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Рис. 1. Тектоническая схема Алдано-Станового щита и положение района работ (по [11] с изменениями) (а) и схема 
геологического строения Верхнеамгинского щелочного массива (по [8,12] с изменениями (б).
а: 1 – гранит-зеленокаменные террейны (WA – Западно-Алданский, BT – Батомгский); 2 – гранулит-ортогнейсовые террей-
ны (ANM – Нимнырский, CG – Чогарский); 3 – гранулит-парагнейсовые террейны (AST – Сутамский, EUC – Учурский); 
4 – тоналит-трондьемит-гнейсовый террейн (TN – Тындинский); 5 – зоны тектонического меланжа (am – Амгинская, kl – 
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чаникам. Первичными рудами являются пирит-
адуляр-кварцевые метасоматиты [15]. 

Рудные тела скарнового типа представлены 
крутопадающими золото-сульфидно-кварцевыми 
жилами и горизонтальными залежами в низах до-
ломитовой толщи венда, вблизи или на контакте 
с кристаллическим фундаментом по периферии 
мезозойских магматитов. 

Золото-медно-порфировая минерализация ло-
кализована в щелочных массивах и представлена 
штокверками с золотосодержащими сульфидами 
и сульфидизированным штоком эпилейцитовых 
сиенит-порфиров [8].

Одним из важных критериев наличия золото-
медно-порфирового и золото-порфирового оруде-
нения является присутствие околорудных серицит-
микроклиновых метасоматитов, гумбеитовых 
и фельдшпатитовых изменений, приуроченных 
к зонам разрывных нарушений и локализован-
ных в щелочных магматических комплексах 
раннемелового возраста [16, 17]. Рудная минера-
лизация в щелочных породах представлена дву-
мя ассоциациями [7,8]. Минералы ранней ассо-
циации – пирит, халькопирит, галенит, сфалерит, 
молибденит, буланжерит сформированы из вы-
соконцентрированных 22–44 мас.% NaCl-экв. 
углекислотно-азотных CO2±N2 флюидов при 
температуре 330–400 °С и давлении 1150 бар [7]. 
Формирование минералов поздней ассоциации – 
алтаит, гессит, петцит и самородное золото 
происходило из низкоконцентрированных 3,3–
9,2 мас.% NaCl-экв. углекислотных флюидов 
при температуре 210–230 °С. Необходимо отме-
тить также наличие в породах Верхнеамгинско-

го щелочного массива редкоземельной (монацит-
Се) и ториевой (торианит) минерализации [7].

Статистическая обработка данных
С целью апробации результатов методов ма-

шинного обучения и подтверждения результатов 
прогнозирования выборка разделена на две ча-
сти. Одна часть, состоящая из 250 проб, была 
использована при создании моделей машинного 
обучения. Другая часть, из 153 проб, была при-
нята как условно новый выделенный объект в пре-
делах площади, не использовалась в процессе 
обучения модели и являлась дополнительной 
тестовой выборкой для созданных моделей 
машинного обучения. К основной выборке из 
250 проб применены стандартные методы мно-
гомерной статистики, включая расчет коэффи-
циентов кларков концентрации (КК) химических 
элементов (табл. 1).

Методом корреляционного анализа выявлены 
основные элементы-спутники золота в штуфных 
пробах Верхнеамгинского массива (n = 250). Ре-
зультаты корреляционного анализа для золота 
(элементы ранжированы по убыванию коэффи-
циентов корреляции): Ag 0,55 – As 0,54 – Sb 0,50 
(средняя положительная связь); Cu 0,39 – V 0,39 – 
Fe 0,27 – Pb 0,23 – Zn 0,16 – Sc 0,16 –Ba 0,14 – 
Mo 0,13 – P 0,13 (слабая положительная связь) 
и Ca – 0,23 – Ti –0,27 – Mg –0,28 (слабая отрица-
тельная связь). Проведен кластерный анализ ме-
тодом иерархической кластеризации. В качест-
ве правила объединения был использован метод 
Варда, а мерой расстояния (близости) 1-r Пирсо-
на. В результате была получена дендрограмма 

Каларская, tr – Тыркандинская); 6 – сшивающие раннепротерозойские граниты; 7 – чехол Сибирской платформы; 8 – раз-
ломы (dj – Джелтулакский, ts – Таксакандинский).
б: 1 – четвертичные отложения (современные аллювиальные отложения, пески, галечники, валунники); 2 – юрские отло-
жения (песчаники, гравелиты, конгломераты); 3–6 – венд-нижнекембрийские отложения (известняки, доломиты, мергели): 
3 – унгелинская свита; 4 – тумулдурская свита; 5 – пестроцветная свита; 6 – усть-юдомская свита; 7 – архейские образова-
ния (кварциты с пачками гнейсов и кристаллических сланцев); 8, 9 – раннемеловые интрузии: 8 – эльконский гипабиссаль-
ный комплекс щелочно-сиенитовый; 9 – лебединский плутонический комплекс монцонит-сиенит-гранитовый; 10 – раз-
рывные нарушения достоверные; 11 – разрывные нарушения предполагаемые

Fig. 1. а –Tectonic scheme of the Aldan-Stanovoy Shield and the location of the work area (by [11] with changes); б – Geo-
logical scheme of the geological structure of the Verkhneamginsky alkaline massif (by [8,12] with changes).
а: 1 – granite-greenstone terranes (WA – West Aldan, BT – Batomga); 2 – granulite-orthogneiss terranes (ANM – Nimnyr, CG – 
Chogar); 3 – granulite-paragneiss terranes (AST – Sutam, EUC – Uchur); 4 – tonalite-trondhjemite-gneiss terrane (TN – Tyndin); 
5 – zones of tectonic mélange (am – Amga, kl – Kalar, tr – Tyrkanda); 6 – stitching Early Proterozoic granites; 7 – cover of the 
Siberian platform; 8 – faults (dj – Dzheltulaksky, ts – Taksakandin).
б: 1 – Quaternary deposits (modern alluvial deposits, sands, pebbles, boulders); 2 – Jurassic deposits (sandstones, gravelstones, 
conglomerates); 3–6 – Vendian-Cambrian deposits (limestones, dolomites, marls): 3 – Ungelinskaya suite; 4 – Tumuldurskaya 
suite; 5 – Pestrocvetnaya suite; 6 – Ust-Yudomskaya suite; 7 – Archean formations (quartzites with packs of gneisses and crystalline 
schists); 8, 9 – Early Cretaceous intrusions: 8 – Elkon hypabyssal alkaline syenite-alkaline granite complex; 9 – Lebedinsky plu-
tonic monzonite-syenite-granite complex; 10 – reliable faults; 11 – inferred faults
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групп связанных между собой химических эле-
ментов (рис. 2). 

Кластерный анализ в целом подтверждает ре-
зультаты корреляционного анализа. Среди эле-
ментов на уровне группировки расстояний объе-
динения, равной 0,3–0,8, обособляются шесть 
основных кластеров:1) Au–As–Ag–Cu–Sb; 2) Be–S–
Pb–Zn; 3) Cd–Cr–Mo; 4) Ba–Fe–P–V–La; 5) Co–
Sc–Mn–Ni; 6) Ca–Sr–Mg–Ti.

Среди кластеров отчетливо выделяется основ-
ная рудная ассоциация, представленная Au–As–
Ag–Cu–Sb. Она соответствует геохимической 
ассоциации Au–Ag–Cu–Bi, приуроченной к гум-
беитизированным породам карбонат-серицит-
мусковит-ортоклазовой фации. Ассоциация 
является индикатором наличия золото-мед-
но-порфирового (Рябиновое месторождение) 
и золото-порфирового (Морозкинское место-

рождение) оруденения, где выделяются высо-
коконтрастные аномалии Au, Ag, Pb, Cu, Zn, 
Mo, As [16].

Геохимическая ассоциация Be–S–Pb–Zn мо-
жет представлять халькофильную полиметалли-
ческую ассоциацию (Pb–Zn–S) в комплексе с Be. 
Присутствие бериллия может быть связано 
с влиянием плагиоклаза вмещающих пород. 
Другой возможной причиной может являться 
мусковитизация пород массива. В целом данная 
ассоциация характеризует наличие сульфидов 
свинца и цинка, что является важным поисковым 
критерием. Геохимическая ассоциация Cd–Cr–
Mo имеет сложно объяснимую природу и яв-
ляется переходной между халькофильной Pb–
Zn–S полиметаллической ассоциацией (Cd) 
и сидерофильной Co–Mn–Ni ассоциацией (Cr–
Mo). Ассоциация Ba–Fe–P–V–La сложно ин-
терпретируема, представлена двумя группами 
элементов: основной литофильной Ba–La–V, си-
дерофильной, включающей только железо, 
а также фосфором – элементом, обладающим 
литофильными и сидерофильными свойствами. 
Сложная конфигурация данного кластера тре-
бует дополнительного изучения и интерпретации. 
Отдельно выделяется кластер сидерофильных 
элементов группы железа (Transition metals) 
Co–Mn–Ni и редкоземельных элементов (REE), 
представленных скандием. Данная минеральная 
ассоциация отражает наличие в массиве Co–Ni 
минерализации. 

Особого внимания заслуживают литофильные 
элементы Ca–Sr–Mg–Ti с явной отрицательной 
связью с минеральной ассоциацией Au–As–Ag–
Cu–Sb, что отражает особенности рудообразо-
вания. Вынос Mg и Ca сопровождает процесс 
окварцевания и серицитизации. Снижение кон-
центраций Ti может указывать на растворение 
титансодержащих минералов (ильменит и сфен) 
в метасоматическом процессе [18]. 

По результатам факторного анализа основной 
выборки получены шесть основных факторов. 
Для них рассчитаны значения факторных нагру-
зок каждого химического элемента. Рассчитанная 
модель объясняет 73 % общей дисперсии, что яв-
ляется вполне удовлетворительным результатом 
(табл. 2).

Первый фактор с максимальным вкладом 
в общую изменчивость 28,3 % отражает измене-
ние большинства исследуемых элементов, таких 

Т а б л и ц а  1 
Кларки концентрации химических элементов

T a b l e  1
Clarks of concentration of chemical elements

Элемент Кларк

Au 10,87
Cr 5,83
Cu 5,50
Pb 3,87
Mn 3,87
Ag 3,59
Mo 3,40
Cd 1,98
S 1,78
As 1,33
Sb 1,03
V 0,94
Co 0,92
Ni 0,80
Be 0,80
Mg 0,76
Ca 0,55
Sc 0,45
Fe 0,43
P 0,42
Zn 0,31
La 0,24
Sr 0,22
Ti 0,06
Ba 0,06
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как Ba, Co, Fe, Mn, P, Sc, V, Zn, а также Cu, La, 
и Pb, значения которых близки к существенным. 

Второй фактор с весом 19,5 % и высокими 
положительными нагрузками Au, Ag, As, Sb, 
а также близкими значениям к значимым фак-
торным нагрузкам Cu, с одной стороны, отра-
жает накопление рудного комплекса элементов 
(Au, As, Ag, Sb, Cu), а с другой, отрицательными 
значениями Ca, Mg, Ti показывает вынос дан-
ных элементов в процессе рудообразования. Вы-
нос Ca и Mg может быть связан с раскислением 
плагиоклаза, замещением амфибола (роговой об-
манки) и биотита карбонат-серицитовой мине-
ральной ассоциацией, развитием щелочного ме-
тасоматизма (гумбеитизация, фельдшпатизация) 
с привносом Na и K. Этот фактор полностью 
соответствует результатам кластерного анализа 
и подтверждает наличие устойчивых геохими-
ческих связей. В дальнейшем, в ходе машинного 
обучения модели, «рудный» фактор будет ис-
пользован как целевой. С этим метасоматозом 
сопряжена Zn–Pb минерализация, что подтвер-
ждается результатами кластерного и факторного 

анализов. Фактор принят как условно «рудный», 
является продуктивным и перспективным по-
казателем для выявления золотого оруденения. 
Достаточно высокий фактический вес (17,5 %) 
отражает высокую значимость и широкое разви-
тие данного процесса в пределах Верхнеамгин-
ского массива. В «рудном» факторе выделяется 
две ассоциации химических элементов: положи-
тельная, As74Ag71Sb69Au64Cu57 и отрицательная, 
Mg74Ca68Ti65 (рис. 3). 

Третий фактор с весом 8,5 % обусловлен вы-
сокой положительной нагрузкой Cr и Ni. Четвер-
тый фактор с весом 8 % определяется высокими 
отрицательными нагрузками Cd и Mo и сущест-
венными значениями Cr, что хорошо соотносит-
ся с результатами кластерного анализа. Пятый 
и шестой факторы имеют незначительные доли 
общей дисперсии, составляющие 5 и 4,4 % соот-
ветственно, малозначимые нагрузки для хими-
ческих элементов.

Оценка достоверности данных, приведенных 
в выборке, проведена с использованием крите-
рия Кайзера–Мейера–Олкина (KMO). Средний 

Рис. 2. Результаты кластерного анализа по основной выборке (n = 250)
Fig. 2. Results of cluster analysis for the main sample (n = 250)
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индекс KMO по всей выборке равен 0,84, что оз-
начает высокие достоверность и адекватность 
этих данных. Для значений Cu, P, Sc и V показа-
тель KMO максимальный, а для Cr, Mo и S – ми-
нимальный (табл. 3). 

В полученном «рудном» факторе наиболее 
существенное положительное влияние на вероят-
ность выявления комплексной полиэлементной 
рудной ассоциации оказывают элементы: Au, Ag, 
As, Cu, Sb, где наблюдается прямая положитель-
ная корреляция (рис. 4). Остальные элементы 
выборки, хоть и имеют влияние на фактор, но 
значительно меньшее. Отмеченное позволяет ис-
пользовать методы машинного обучения для опе-
ративного прогнозирования участков, перспек-

тивных на выявление Au, Ag, As, Cu, Sb рудной 
геохимической ассоциации.

В ходе дальнейшей статистической обработ-
ки значений «рудного» фактора был принят закон 
log-нормального распределения, выполнен стан-
дартный набор операций по расчету минимально 
аномального, фонового содержаний, коэффици-
ента вариации и других показателей, отражаю-
щих статистические особенности распределе-
ния значений. В соответствии с этим выделены 
и ранжированы уровни аномальных значений 
«рудного» фактора: No – фоновое, Low – низкое 
аномальное, Med – среднее аномальное, High – 
высокое аномальное. В процессе машинного об-
учения моделей данная многоклассовая клас-

Т а б л и ц а  2
Значения факторных нагрузок по основной выборке (n = 250)

T a b l e  2
Factor loading values for the main sample (n = 250)

Элемент Fac1 Fac2 Fac3 Fac4 Fac5 Fac6

Au –0,32 0,64 0,01 0,03 0,17 0,42
Ag –0,36 0,71 –0,05 –0,07 0,09 0,11
As –0,48 0,74 –0,02 –0,03 –0,02 0,20
Ba –0,73 –0,06 –0,10 0,31 0,03 –0,21
Be –0,44 –0,14 –0,34 –0,30 –0,28 0,00
Ca –0,22 –0,68 –0,40 –0,21 0,20 0,34
Cd –0,11 –0,12 –0,19 –0,61 –0,10 0,00
Co –0,75 –0,33 0,35 0,17 –0,18 0,13
Cr –0,02 –0,08 0,73 –0,44 –0,18 0,03
Cu –0,55 0,57 0,18 –0,08 0,07 0,09
Fe –0,76 0,15 0,28 0,26 –0,06 –0,28
La –0,50 –0,27 0,17 –0,24 0,39 –0,26
Mg –0,34 –0,74 –0,06 –0,34 –0,01 0,21
Mn –0,64 –0,41 –0,04 0,18 –0,29 0,10
Mo –0,05 0,24 0,11 –0,64 0,21 –0,47
Ni –0,45 –0,39 0,60 –0,15 –0,04 0,17
P –0,82 –0,06 –0,03 0,27 0,17 –0,15
Pb –0,58 0,40 –0,33 –0,18 –0,05 –0,20
S –0,22 0,31 –0,37 –0,16 –0,59 –0,10
Sb –0,38 0,69 0,01 –0,13 0,27 0,18
Sc –0,74 –0,18 0,27 –0,08 –0,18 0,17
Sr –0,49 –0,49 –0,48 –0,06 0,32 0,12
Ti –0,31 –0,65 0,02 0,18 0,16 –0,24
V –0,86 0,08 –0,05 –0,03 0,22 0,02
Zn –0,77 0,09 –0,25 0,02 –0,27 –0,14
Общая дисперсия 7,08 4,86 2,12 1,74 1,26 1,10
Доля объясненной 
дисперсии

0,28 0,19 0,08 0,07 0,05 0,04
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сификация будет являться целевой, а значения 
«сырых» значений химических элементов будут 
переменными, представляющими информацию 
о целевой переменной. 

Применение алгоритмов  
машинного обучения

С целью выявления наиболее эффективного 
метода прогнозирования были использованы во-
семь основных методов классификации: Boost-
ing (AdaBoost), Decision Tree, K-Nearest Neigh-
bors, Linear Discriminant Analysis, Naive Bayes, 
Neural Network (Multilayer Perceptron), Random 
Forest и Support Vector Machine [4, 6, 19]. Широ-
кий выбор методов обоснован разными алгорит-
мами обучения для каждого из них. В процессе 
обучения были сформированы три локальные 
выборки: тренировочная, для настройки модели 
и проверки ее производительности (160 проб); 
валидационная, для подбора оптимального на-
бора гиперпараметров (40 проб); тестовая, для 
итоговой оценки модели (50 проб). Распределе-
ние проб в таких пропорциях позволяет избе-
жать недообучения или переобучения модели 
и дать объективную оценку  работе модели [4].

На основе созданной по 250 пробам модели 
были прогнозированы аномальные значения 
в пробах тестовой выборки (153 пробы). Резуль-

таты прогноза приведены в табл. 4. По приве-
денным данным наиболее точными оказались 
три метода Random Forest, Support Vector Ma-
chine и Neural Network (Multilayer Perceptron), 
точность прогнозирования которых превысила 
85 %. При этом стоит отметить, что все алгорит-
мы показали самые худшие результаты по пред-
сказанию средних аномальных значений (Med). 
Высокий показатель неточности предсказаний 
средних аномальных значений, предположитель-
но, связан с малым количеством проб данного 
кластера (менее 30). С одной стороны, можно 
предположить наличие определенных проблем 
при обработке малых массивов информации, но 
с другой стороны, по данному кластеру относи-
тельно неплохие результаты показали методы ма-
шинного обучения Support Vector Machine и Naive 
Bayes, что характеризует их способность коррект-
но работать с малыми массивами информации. 
Несмотря на достаточно низкие показатели по 
данному кластеру, при дальнейшей тренировке 
моделей не представляется возможным увели-
чить точность предсказания. Отдельно стоит от-
метить, что наилучшие результаты каждый из 
методов показал по фоновым (No) и высоким ано-
мальным значениям (High). 

В целом все методы показали удовлетвори-
тельные результаты и могут быть использова-

Рис. 3. График отношений химических элементов, отраженный в «рудном» факторе
Fig. 3. Graph of chemical element relationships reflected in the “ore” factor
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ны при прогнозировании, за исключением Naive 
Bayes, где общая точность предсказания соста-
вила всего лишь 9,2 %. Возможной причиной 
низкого результата может являться корреляция 
предикторов между собой, что противоречит 
предположению о независимости признаков в ал-
горитме Naive Bayes.

Наиболее точными алгоритмами предсказа-
ний являются Support Vector Machine. Они обла-
дают высокой общей точностью 89,2 % и одним 
из самых высоких уровней предсказания сред-
них аномальных значений. Алгоритмы Random 
Forest и Neural Network (Multilayer Perceptron) 
имеют близкие результаты, различные в точно-

сти определения фоновых и низких аномальных 
значений. Данные алгоритмы отличают достаточ-
но высокие показатели предсказания, спрогнози-
рованные относительно всех других классов для 
каждой из выборок, что отражают ROC-кривые 
(рис. 5). В данной выборке по выбранным трем 
алгоритмам графики показывают зависимость ко-
личества верно классифицированных положитель-
ных примеров от количества неверно классифи-
цированных отрицательных примеров. В целом 
ROC-анализ подтверждает фактически спрогно-
зированные результаты. 

С целью контроля качества построенной мо-
дели и измерения производительности для каж-
дого элемента был построен график среднего 
уменьшения точности (Mean Decrease in Accu-
racy), в котором наиболее высокие значения ука-
зывают на степень участия и важность в прогнози-
ровании данного химического значения (рис. 6). 
На графике отображается высокая значимость 
как рудных элементов: As–Ag–Sb–Au–Cu, так 
и элементов с отрицательной корреляцией: Mg–
Ca–Ti. Дополнительно отмечается повышенное 
влияние на прогнозирование V–Fe–Pb элемен-
тов, ранее не выделяемых как значимые, что 
должно учитываться при интерпретации про-
гнозных значений и может привести к измене-
нию самого алгоритма обучения.

Результаты и обсуждение
Сравнение и интерпретация результатов, по-

лученных с использованием разных алгоритмов, 
позволяют оценить их точность относительно 
друг друга и выбрать наиболее подходящий и эф-
фективный метод для решения задач по про-
гнозированию. Для данной выборки наилучший 
результат был показан при использовании алго-
ритма Support Vector Machine. 

Алгоритм Support Vector Machine основан на 
разделении геохимических и других данных че-
рез гиперплоскость. Например, разделение проб 
на «рудные» и «безрудные» через оптимальную 
гиперплоскость и определение трех областей 
поиска целей по обе стороны от данной гипер-
плоскости. Также используется генетический ал-
горитм для оптимизации гиперпараметров Sup-
port Vector Machine, чтобы уменьшить их влияние 
на результаты прогнозирования [6, 19].

Для сравнения предсказанных результатов по 
всей выборке построены схемы настоящих ано-
мальных содержаний «рудного» фактора и карта 
аномальных предсказанных значений, получен-

Т а б л и ц а  3
Значения критериев  

Кайзера–Мейера–Олкина (KMO)  
для химических элементов

T a b l e  3
Kaiser–Meyer–Olkin (KMO)  

criteria values for chemical elements

Элемент КМО

Средний 0,84
Au 0,82
Ag 0,88
As 0,83
Ba 0,87
Be 0,83
Ca 0,75
Cd 0,71
Co 0,85
Cr 0,55
Cu 0,90
Fe 0,83
La 0,89
Mg 0,86
Mn 0,88
Mo 0,56
Ni 0,74
P 0,91
Pb 0,82
S 0,61
Sb 0,83
Sc 0,92
Sr 0,80
Ti 0,82
V 0,90
Zn 0,84
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ных методом машинного обучения Support Vec-
tor Machine (рис. 7). На схемах отражены от-
носительные значения в условных единицах 
«рудного» и прогнозного факторов. Участки раз-
делены красной линией на две ранее использован-
ные при обучении модели выборки: обучающую 
(n = 250) и тестовую (n = 153). При детальном 
изучении и сопоставлении двух карт вполне вид-
ны основные участки минерализации, направле-
ния минерализации, и в целом карты отличаются 
схожим обликом.

Полученные результаты можно считать удов-
летворительными и использовать при планиро-
вании поисковых работ. В целом прогноз отра-
жает основные участки минерализации, даже 
несмотря на крайне неравномерное опробова-

ние в ходе геологических маршрутов и качест-
венные показатели (No, Low, Med, High), полу-
ченные при прогнозировании, что подтверждает 
его универсальность и возможность применения 
на поисковой стадии. 

Заключение
Применение алгоритмов машинного обуче-

ния является эффективным инструментом для 
анализа данных и построения прогнозов. Ма-
шинное обучение позволяет автоматически об-
рабатывать большие объемы данных и выделять 
закономерности локализации перспективных 
участков. Для успешного применения методов 
машинного обучения необходимо правильно вы-
бирать модели и алгоритмы прогнозирования, 

Рис. 4. Диаграммы рассеяния для «рудного» фактора и содержаний Ag (а), Au (б), As (в), Cu (г), Sb (д) 
Fig. 4. Scatter plots for the “ore” factor and the contents of Ag (a), Au (б), As (в), Cu (г), Sb (д) 
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обучать их на соответствующих геологических 
данных и проводить качественную проверку ре-
зультатов.

На примере Верхнеамгинского щелочного 
массива были построены модели МО и оценены 
результаты прогнозирования золотого орудене-
ния восемью алгоритмами машинного обучения: 
Boosting (AdaBoost), Decision Tree, K-Nearest 
Neighbors, Linear Discriminant Analysis, Naive 
Bayes, Neural Network (Multilayer Perceptron), 
Random Forest и Support Vector Machine. Среди 
них выбраны и применены наиболее точные для 
прогнозирования оруденения. 

Методы машинного обучения отличаются уни-
версальностью и могут быть применимы при 
поисках на разные виды твердых полезных иско-
паемых. Ввиду комплексной и многофакторной 
обработки геохимических данных, особое зна-

чение методы МО могут иметь в первую очередь 
при поисках благородных металлов и полиме-
таллов, а также при прогнозировании скрытого 
оруденения по геохимическим данным, характе-
ризующим надрудный уровень.  

При поисковых работах методы МО могут 
эффективно применяться в комплексе с XRF-
анализатором, непосредственно в полевых усло-
виях, когда в предварительно подготовленной 
модели используются массивы «сырых» данных 
и оперативно определяется степень их перспек-
тивности, с последующим построением схем ано-
мальных значений. 

Алгоритмы машинного обучения применимы 
при камеральной обработке информации, интер-
претации результатов разных видов работ поис-
ковой стадии: штуфное опробование, опробование 
по вторичным и первичным ореолам рассеяния 

Т а б л и ц а  4 
Фактическое количество корректно предсказанных значений  

для каждого уровня аномальных значений и среднее по всему алгоритму, %

T a b l e  4
The actual number of accurately predicted values  

for each level of outliers and the average for the entire algorithm, %

№ п/п Метод обучения No Low Med High Сред.

1 Random Forest 99,2 81,3 47,4 93,3 89,6

2 Support Vector Machine 90,2 89,1 63,2 97,8 89,2

3 Neural Network (MLP) 89,3 89,1 36,8 95,6 86,4

4 K-Nearest Neighbors 84,4 81,3 36,8 86,7 80,4

5 Boosting (ADABoost) 96,7 48,4 0 91,1 76

6 Decision Tree 94,3 53,1 26,3 66,7 73,6

7 Linear Discriminant Analysis 59,8 73,4 36,8 77,8 64,8

8 Naive Bayes 1,6 14,1 68,4 0 9,2

Рис. 5. ROC-кривая моделей: Support Vector Machine (а), Random Forest (б), Neural Network (в)
Fig. 5. ROC-curve of the models: Support Vector Machine (a), Random Forest (б), Neural Network (в)
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и др. Достоинством МО является возможность 
актуализации модели, внесения изменений в свои 
алгоритмы в процессе получения первичной гео-
логической информации. Свойство обучаемости 
позволяет прогнозируемым данным максимально 
соответствовать всей базе данных геологической 
информации, накопленной в процессе проведе-
ния геологоразведочных работ. При корректной 
обработке первичной информации и интерпрета-
ции получаемых результатов представляется воз-
можным прогнозировать объекты-эталоны даже 
по небольшому количеству отобранных проб 
(n <100). 
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