Почвоведение

УДК 631.48

Изменение свойств подстилки и почв на гарях в сосновых лесах Западного Забайкалья

Е.Ю. Шахматова

Институт общей и экспериментальной биологии СО РАН, 670047, Улан-Удэ, ул. Сахьяновой, 6, Россия e-mail: ekashakhmat@mail.ru

Аннотация. В сосновых лесах Западного Забайкалья преобладают низовые пожары, которые оказывают сильное воздействие на подстилку и свойства почв. Основной причиной высокой горимости сосняков исследуемой территории является засушливость климата в первую половину вегетационного периода. Для изучения последствий влияния пирогенного фактора были заложены пробные площади на гарях, образованных периодическими пожарами средней интенсивности и находящихся на различных стадиях восстановительной сукцессии. В почвенном покрове на разновозрастных гарях преобладают дерново-подбуры с пирогенно-трансформированными профилями. Проведенные исследования выявили различия в запасах, мощности и фракционном составе подстилки, морфологических, водно-физических и физико-химических показателях верхних горизонтов почв, что является результатом пожаров, произошедших в разные годы. На свежей гари наблюдаются малая мощность и низкие запасы подстилки, а также в ее составе – высокое содержание фракций свежеопавшей хвои и веток. В верхних пирогенных горизонтах почвы отмечены высокие показатели плотности сложения, плотности твердой фазы и низкие значения общей порозности, гигроскопической влаги и коэффициента фильтрации. Установлено, что подстилка и гумусовый горизонт в почве на свежей гари отличаются более щелочным характером реакции среды, высоким содержанием обменных катионов, углерода и низким содержанием азота по сравнению с аналогичными показателями в почве на 5летней гари. В иллювиальных горизонтах почвы на свежей гари также отмечено повышенное содержание подвижного железа. Характеристики подстилки, морфологические, водно-физические и физико-химические свойства еще более отличны в почве на 10-летней гари.

Ключевые слова: низовые пожары, почвы сосновых лесов, трансформация и дифференциация свойств.

Soil Properties Differentiation of Burned Areas in Pine Forests of Western Transbaikalia

E.Yu. Shakhmatova

Institute of General and Experimental Biology SB RAS, 6, Sakhyanova Str., Ulan-Ude, 670047, Russia e-mail: ekashakhmat@mail.ru

Abstract. Ground fires prevailing in pine forests of Western Transbaikalia have a strong impact on litter and soil properties. The main reason of pine forests high burning of the studied area is the arid climate in the first half of a vegetation season. To study a pyrogenic factor consequences a number of sample plots were laid on the burned areas formed by medium intensity periodic fires and which are at different stages of regenerative succession. Soddy podburs with pyrogenically-transformed profiles are dominated in the soil cover of different-aged burned burned areas. The conducted study revealed that differences in reserves, power and fractional composition of litter, morphological, hydro-physical and physical-chemical indicators of soil upper horizons are the result of fires occurred in different years. Low power and low reserves of litter as well as a high content of fractions of newly fallen pine needles and twigs in its composition are observed for a young burning. High indicators of bulk density, density of solid phase and low values of total porosity, hygro-

_

scopic moisture and filtration coefficient are found in the upper pyrogenic soil horizons. It was found that the litter and humus layer of a soil of a young burning are characterized by more alkaline reaction, a high content of exchangeable cations, carbon and low nitrogen content in comparison with those in the soils of a 5-year-old burning. Increased content of mobile iron was also noted in illuvial horizons of the soils of a young burning. Characteristics of litter, morphological, hydro-physical and physical-chemical properties are more distinct in the soil of 10-year-old burning.

Key words: ground fires, soil of pine forests, soil transformation and differentiation.

Введение

Произрастающие в Западном Забайкалье светлохвойные леса ежегодно подвергаются пожарам, около 95–97 % из которых приходится на долю низовых [1]. Этому способствуют специфические для территории природные условия (низкий уровень количества осадков, горнокотловинный рельеф, преобладание хвойных насаждений с высоким процентом сухих и мертвопокровных типов леса), а также наличие вырубок, площади которых увеличиваются с каждым годом.

В отличие от верховых пожаров, которые полностью уничтожают древостой и, как правило, приводят к смене типа растительности, низовые пожары воздействуют избирательно на структурные элементы экосистем, главным образом трансформируя нижние ярусы лесной растительности, мохово-лишайниковый покров, подстилку и сильно изменяя свойства почв.

Цель данных исследований — выявление различий в свойствах подстилки и почв на гарях, сформированных пожарами разных лет в сосновых лесах Западного Забайкалья.

Материалы и методы

Исследования проведены в сосновых лесах горно-лесостепного высотно-поясного комплекса [2] Селенгинского среднегорья, в бассейне р. Воровка (притока р. Уда, бассейн р. Селенга). Климат территории резко континентальный, коэффициент континентальности 80-85 по Ценкеру. Средние годовые температуры колеблются от -4,2 °C до -5,0 °C, средняя температура воздуха в июле 26-34 °C, средняя температура в январе -24...-32 °С [3]. Весна и начало лета отличаются высокой сухостью воздуха и почвы, незначительными осадками и сильными ветрами. Влажность воздуха в это время составляет 30-40 %, а в отдельные дни - 10 %. Продолжительность вегетационного периода – 130-155 дней. Среднегодовое количество осадков – 250 мм в год. Наблюдается чередование засушливых и влажных лет. Большая часть осадков (70-80 %), хотя и выпадает в летний период, но они приходятся в основном на июль-август. Майиюнь характеризуется засушливостью [4]. Это является основной причиной высокой горимости сосняков в первую половину вегетационного периода. Факторы возникновения пожаров в исследуемом регионе могут быть как природного, так и антропогенного происхождения. Антропогенные источники огня (рубки, неконтролируемые выжигания и др.) являются преобладающими и, в среднем, составляют более 80 % случаев возгораний. Природным фактором возникновения летних лесных пожаров является грозовая активность, и доля пожаров, возникающих от гроз, варьирует в пределах 5–20 % случаев [5].

Для изучения последствий влияния низовых пожаров были выбраны сравнительно однородные по экологическим параметрам (положение в рельефе, абсолютная высота, тип почвы, почвообразующие породы, возраст и полнота древостоя) участки сосновых лесов на свежей гари и на гарях с давностью пожара 5 и 10 лет. Были заложены пробные площади (ПП) размером 20×25 м в нижних частях делювиальных шлейфов склонов на гарях, образованных низовыми пожарами средней интенсивности и находящихся на различных стадиях восстановительной сукцессии: ПП1-2008 - в сосняке мертвопокровном (пожар 2008 г. – свежая гарь), ПП2-2008 – в сосняке рододендроново-разнотравнолишайниковом (пожар в 1998 г. – 10-летняя ПП3-2008 - в сосняке гарь), злаковоразнотравном (пожар в 2003 г. – 5-летняя гарь).

На ПП определяли интенсивность и давность пожаров [6, 7], измеряли мощность и запасы подстилки в 10 повторностях, устанавливали водопроницаемость почв, закладывали почвенные разрезы, изучали морфологию почв, отбирали пробы для фракционирования подстилки и образцы почв на физико-химические исследования. Названия почв и индексы почвенных горизонтов даны согласно «Классификации и диагностики почв России» [8]. Определения основных физических и химических свойств почв выполняли общепринятыми методами [9, 10].

Результаты и обсуждение

Основной фон лесного покрова в бассейне р. Воровка в пределах исследуемой территории образуют насаждения сосны, которые занимают пологие склоны и шлейфы гор и характеризуются повышенной пожароопасностью. Обследование территории бассейна р. Воровка не об-

наружило лесные экосистемы, которые ранее не испытали на себе влияние пирогенного фактора.

Известно, что значительное влияние на формирование профиля лесных почв и на протекающие в нем процессы оказывает подстилка, которая одновременно является и верхним органическим горизонтом почвы. Она играет важнейшую роль в функционировании лесной экосистемы [11] и в ненарушенных экосистемах, представляя собой своего рода защитный экран, обеспечивает сохранность минеральных горизонтов [12].

Вследствие воздействия низовых пожаров средней интенсивности в исследуемых сосновых лесах происходит трансформация подстилки, связанная с частичным ее сгоранием. В результате меняются состав и свойства подстилки и скорость ее разложения. Анализ мощности, запасов и фракционного состава подстилок на пробных площадях позволил выявить существенные различия в их свойствах, связанные с давностью пожаров.

Мощность лесной подстилки является важным показателем, характеризующим интенсивность деструктивных процессов. Почвы на гарях района исследований имеют подстилку мощностью до 2,5 см (табл. 1).

В первый год после пожара подстилка маломощная и характеризуется низкими запасами органического вещества. Можно предположить, что сразу же после прохождения пожара снижение мощности подстилки было еще большим. В составе опада четко выражены хвоя деревьев, веточки, кора и шишки, формирующие высокий уровень запасов мертвого органического вещества на поверхности почвы. На 5-летней гари мощность и запасы подстилки закономерно увеличиваются. За 10 лет мощность может увеличиваться более чем в 2, а запасы в -4.5 раза. Более высокие запасы подстилки на 10-летней гари связаны с накоплением ферментированных остатков из-за медленного разложения органики, представленной по преимуществу хвоей, веточками и корой. Таким образом, влияние пожара отражается на изменении отдельных компонентов, мощности и запасов подстилки, а возраст послепожарного периода определяет скорость ее восстановления. Для восстановления нормального подстилочного горизонта на поверхности почв с признаками, характерными для ненарушенных подстилок, необходимо длительное время.

В почвенном покрове остепненных разнотравных сосновых лесов исследуемой территории фоновыми являются дерново-подбуры, которые формируются на элювиальных, элювиально-делювиальных и делювиальных отложениях легкого песчаного и супесчаного гранулометрического состава. В морфологическом строении профилей почв на разновозрастных гарях наблюдается дифференциация в их верхней части, связанная с давностью пожаров. В профиле дерново-подбура на свежей гари в результате трансформации подстилки и гумусового горизонта проявляются следующие пирогенные признаки: увеличение плотности, малая мощность, очень темный оттенок горизонтов за счет включений углистой пыли и многочисленных черных древесных углей. Переход в иллювиальный горизонт хорошо выражен по цвету. Граница перехода волнистая или кармановидная. Горизонт ВГ уплотнен в верхней части и имеет буроватоохристую окраску с пятнами, вкраплениями и потеками вещества темно-серого и бурого оттенков. Формула организации почвенного профиля дерново-подбуров на гарях имеет следующий вид: Opir (0-1 см) - AYpir (1-5) - BF1(5-27) – BF2 (27–38) – С (38–112 см).

Для дерново-подбура на 5-летней гари характерна менее мощная подстилка, переходящая в темно-серый с буроватостью гумусовый горизонт. В горизонте АҮ местами присутствуют затеки пирогенной органики и мелкие угольки. Переход в иллювиальный горизонт постепенный. Горизонт ВF более плотный, чем в почве на старой гари, содержит включения мелких и крупных корней и постепенно переходит в почвообразующую породу. Формула организации профиля почвы имеет вид: Оріг (0–1 см) – AYBF1 (1–8) – BF1 (8–40) –BF1C (40–55) – C (55–98 см).

В почве, где воздействие пожаров отсутствовало 10 лет, подстилка вниз по профилю почвы сменяется темно-серым гумусо-аккумулятивным горизонтом АУ мощностью до 10 см. Далее располагается переходный горизонт, вмещающий в себя часть горизонта АУ и иллювиальный

Таблица 1

Мощность и запасы подстилок в почвах на разновозрастных гарях * (n=10)

Возраст гари	Мощность, см			Запас, т/га			
	2008	2009	2010	2008	2009	2010	
1 год	0,91±0,05	0,97±0,02	0,95±0,04	2,27±0,13	2,18±0,17	2,20±0,14	
5 лет	$1,60\pm0,40$	1,50±0,41	$1,40\pm0,45$	8,55±0,15	8,66±0,16	$8,70\pm0,14$	
10 лет	1,90±0,31	2,10±0,30	2,20±0,28	$0,38\pm0,11$	10,45±0,09	10,52±0,06	

^{*} Средние значения показателей и их ошибка.

горизонт BF, имеющий буроватые или буровато-охристые тона окраски. Ниже горизонт BF переходит в почвообразующую породу. Для минеральной части профиля характерно наличие железисто-марганцевых примазок. Формула организации профиля имеет вид: О (0–1/1,5 см) – AYBF (1/1,5–4) – BF1 (4–24) – BF2 (24–35) – C1 (35–50) – C2 (50–63 см).

Исследуемые почвы на гарях разного возраста, сформированные в результате низовых пожаров, имеют черты различий, как в физических, так и химических свойствах верхних горизонтов профилей. Так в верхних пирогенных горизонтах почвы на свежей гари высокие показатели плотности сложения и плотности твердой фазы связаны с недавним (пирогенным) уплотнением горизонтов, а низкие значения общей порозности – это результат ухудшения в них аэрации вследствие уменьшения объема влагопроводящих пор. Признаки недавнего сгорания органического вещества проявляются в низких показателях гигроскопической влаги в верхних горизонтах почв на свежей гари. На свежей гари выявлены неудовлетворительные показатели водопроницаемости почвы, которые обусловлены уменьшением коэффициента фильтрации воды после пожара и связаны как с образованием корки от спекания органики под влиянием высоких температур на поверхности почвы, так и с обогащением почвы тяжелыми углистыми частицами, проникающими в поровое пространство. На 5-летней и на 10-летней гарях показатели коэффициента фильтрации выше, что свидетельствует об улучшении фильтрационных свойств почв с увеличением послепожарного периода (табл. 2).

Исследуемые ночвы на гарях характеризуются супесчаным гранулометрическим составом с низким содержанием илистой (<0,001 мм) фракции. Выявлено незначительное увеличение ила в иллювиальных горизонтах почвы на свежей гари и уменьшение этой фракции в почвах с более ранним пирогенным воздействием.

Заметная дифференциация свойств наблюдается и в химических показателях почв. Сразу после пирогенного воздействия в их верхних горизонтах высвобождаются значительные концентрации зольных веществ и изменяются реакция среды, содержание углерода, азота, обменных катионов. В подстилке на 10-летней гари выявлено кислое значение рН, на 5-летней – слабокислое, на свежей гари – ее величина приближается к нейтральной (табл. 3).

В гумусовых горизонтах почвы на свежей гари наблюдается послепожарное уменьшение кислотности. В подстилке происходит увеличение содержания катионов кальция, а в иллювиальной части профиля — оксалаторастворимого железа, извлекаемого вытяжкой Тамма. В почве на молодой гари отмечено относительное увеличение содержания углерода в отличие от почв на 5-летней и 10-летней гарях. На свежей гари низкое содержание азота является результатом частичного сгорания его органических соединений. С увеличением возраста гари значения рН, обменных катионов, аморфного железа и углерода в подстилках и почвах уменьшаются, а содержание азота возрастает.

Физические и водно-физические свойства почв на пробных площадях

Таблица 2

Горизонт	Глубина, см	Плотность сложения	Плотность твердой фазы	Общая порозность	Гигровлага	Коэффициент фильтрации К _{10.} мм/мин			
Разр. 1-08 (ПП 1) свежая гарь									
AYpir	1–5	1,45	2,57	44	0,97	4,95			
BF1	11–21	1,56	2,63	41	0,56	8,07			
BF2	27–38	1,58	2,66	41	0,34	11,65			
C1	70–80	1,74	2,65	34	0,32	19,23			
Разр. 3-08 (ПП 3) 5-летняя гарь									
AYpirBF1	1-8	1,38	2,58	47	0,76	5,27			
BF1	19–29	1,57	2,65	41	0,56	8,59			
BF2C	42-52	1,81	2,65	32	0,39	11,07			
C	71–81	1,85	2,68	31	0,15	19,35			
Разр. 2-08 (ПП2) 10-летняя гарь									
AY	1/1,5–4	1,24	2,55	51	1,45	7,27			
AYBF1	9–19	1,55	2,63	41	0,88	11,05			
BF2	24–35	1,61	2,67	40	0,52	12,38			
C1	37–47	1,74	2,65	34	0,39	12,58			
C2	51–61	1,83	2,64	31	0,30	15,06			

Таблица 3

Химические показатели почв

Горизонт	Глубина, см	рН водн.	Обменные катионы, ммоль экв./100 г почвы		Fe ³⁺ по Тамму	С	N		
			Ca ²⁺	Mg ²⁺		%			
Pазр. 1-08 (ПП 1) свежая гарь									
Opir	0-1	6,1	19,1	1,1	_*	-	-		
AYpir	1–5	6,5	10,8	9,5	0,64	1,51	0,070		
BF1	11–21	6,3	6,7	3,3	0,72	0,31	0,018		
BF2	27–38	6,5	7,5	2,5	0,64	0,20	0,010		
C	70–80	6,7	8,3	4,2	0,50	0,06	-		
Разр. 3-08 (ПП 2) 5-летняя гарь									
Opir	0-1	5,7	16,1	3,6	-	-	-		
AYpirBF1	1-8	6,3	8,3	6,7	0,60	0,95	0,060		
BF1	19–29	6,3	4,4	4,3	0,64	0,20	0,011		
BF1C	42-52	6,6	4,2	4,2	0,52	0,14	-		
С	71-81	6,9	3,1	3,1	0,32	0,07	-		
	Разр. 2-08 (ПП 3) 10-летняя гарь								
О	0-1/1,5	5,3	13,5	5,8	-	-	-		
AYBF1	1/1,5–4	6,1	14,3	3,6	0,48	1,36	0,090		
BF1	9–19	6,3	10,0	3,9	0,56	0,25	0,015		
BF2	24–35	6,4	8,0	6,0	0,44	0,13	-		
C1	37–47	6,6	5,0	5,0	0,40	0,08	-		
C2	51–61	6,9	4,6	2,3	0,40	0,07	-		

^{*} Значение показателя не определено.

Заключение

Сухие сосновые леса в Западном Забайкалье формируются при активном влиянии периодических низовых пожаров, которые наряду с трансформацией нижних ярусов растительности заметно изменяют напочвенный покров и свойства почв.

Сравнительный анализ свойств дерновоподбуров на пробных площадях, сформированных в сходных экологических условиях, выявил различия в морфологическом строении их профилей, в составе и свойствах горизонта подстилки, в водно-физических и физико-химических параметрах верхних горизонтов почв. Недавнее пирогенное воздействие демонстрирует высокие показатели неразложившихся грубых фракций подстилки - хвои и веточек, и низкие - ее мощности и запасов. При старении гари значения мощности подстилки и запасов полуразложившейся органики становятся более высокими. В морфологии почв более позднее влияние пожара проявляется в увеличении показателя плотности, высокой мощности, очень темном оттенке верхнего гумусового горизонта почвы на свежей гари. В верхних уплотненных горизонтах почвы свежей гари отмечаются низкие показатели общей порозности и коэффициента фильтрации воды, увеличение щелочности и более высокие показатели гумуса и обменных катионов.

Таким образом, на гарях, сформированных в

сосновых лесах Западного Забайкалья, наблюдается пространственная неоднородность свойств подстилки и верхних горизонтов почв, вызванная воздействием разновозрастных пожаров. Учитывая возраст гарей и показатели изученных параметров, можно проследить скорость восстановления подстилки и свойств почв в постпирогенный период.

Литература

- 1. *Евдокименко М. Д*. Пирогенная дигрессия светлохвойных лесов Забайкалья // География и природные ресурсы. 2008. № 2. С. 109–115.
- 2. Смагин В.Н., Ильинская С.А., Назимова Д.И., Новосельцева И.Ф., Чередникова Ю.С. Типы лесов гор Южной Сибири. Новосибирск: Наука, 1980. 336 с.
- 3. *Атлас* Забайкалья (Бурятская АССР и Читинская область). М.; Иркутск: ГУГК при Совете Министров СССР, 1967. 176 с.
- 4. *Жуков В. М.* Климат Бурятской АССР. Улан-Удэ, 1960. 188 с.
- 5. Евдокименко М. Д. Факторы горимости байкальских лесов // География и природные ресурсы. 2011. № 3. С. 51–57.
- 6. *Цветков П.А.* Нагар как диагностический признак // Хвойные бореальные зоны. 2006. Т. 23. № 3. С. 132–137.
- 7. *Лесные* пожары http://www.alh-rb.ru/documents/section.php?SECTION ID=15.

Е.Ю. ШАХМАТОВА

- 8. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- 9. Воробьева Л. А. Теория и практика химического анализа почв. М.: ГЕОС, 2006. 400 с.
- 10. *Теории* и методы физики почв: Коллективная монография / Под ред. Е.В. Шеина и Л.О. Карпачевского. М.: Гриф и К, 2007. 616 с.
- 11. *Карпачевский А.О.* Лес и лесные почвы. М.: Лесная промышленность, 1981. 264 с.
- 12. *Ильина Т.М., Сапожников А.П.* Лесные подстилки как компонент лесного биогеоценоза // Вестник КрасГАУ. 2007. № 5. С. 45–48.

Поступила в редакцию 27.03.2017